常用Stata命令(持续更新中)

为便于实际操作,笔者将命令与显示结果存储成do文件(直接可以在Stata软件中查看,便于学习),移步资源窗口下载。

基本操作命令:

  1. 查看数据:

      browse  #看到全部数据
      list q  #只看到q的数据
      list q area in 4/10 #显示指定变量从i=4到i=10的数据
      describe #查看数据集中的变量名单、标签
      summarize q #查看变量q的统计特征
      summarize q,detail #查看变量q更多的统计指标
      summarize #若未指明变量,则显示数据集中所有变量的统计指标
      tabulate pl #显示变量pl的经验累积分布函数
      pwcorr pl pf pk,sig star(.05)
      #显示变量pl、pf、pk之间的相关系数,.05表示显著性水平为5%
      I q farmm if q<=200 #显示满足条件的指定变量的数据 
      #还可以设置多个条件,中间要用&连接
    
  2. 输入数据:

    cd G:\Stataex  #指定默认路径
    pwd #查看当前路径
    import excel "G:\Stataex\expd.xls", sheet("sheet11")
    firstrow clear  #输入数据
    save "G:\Stataex\expanel.dta"   #保存数据
    # 在 Stata中“/* */”、“*”表示对命令进行注解,在Stata中不会被执行
    
  3. 调用数据:

    use G:\Stataex\expanel.dta,clear 
    #打开指定路径下的数据文件,这里的clear表示把之前的数据都清除掉。
    shellout "auto.xls"   #打开auto.xls, 注意要写全后缀
    import excel "auto.xls",sheet(domestic)   #导入Excel数据
    label variable lnprice "ln(汽车价格-price)" #为变量lnprice添加标签
    cls #清屏,stata16里的新功能
    
  4. 显示面板数据结构:

    xtdescribe   
    #显示面板数据结构
    
  5. 显示面板数据的统计特征:

    xtsum q area provi year
    #可以查看多个变量(q,area,provi,year)的统计特征
    
    
  6. 查看数据的分布频率:

    xttab q in 1/100
    #查看前1到100个q的分布情况   多用于离散模型
    #在此基础上变形
    xttab q if q<=100
    #查看 q小于等于100时的分布频率
    
    ##在使用xttab命令时,需要设置最大值  
    set maxsize *
    #在Stata/MP和Stata/SE中,允许的范围:10< * < 11000
    #Stata/IC中:10< * < 800  超过此范围会报错
    
  7. 画图:

    xtline q, overlay
    #表示在同一图里,画变量q的时间序列图,否则,画n个(n个个体)时间序列图
    histogram q,width(1000) frequency #变量q的直方图
    kdensity q #变量q的连续经验分布图/核密度函数图
    scatter tc q #tc与q之间的散点图
    twoway (scatter tc q)(lfit tc q) #散点图上画出回归直线
    twoway (scatter tc q)(qfit tc q) #散点图上画出二次回归曲线
    graph combine scatter1.gph scatter2.gph #将两张图并列排放在一张图上
    #scatter1,scatter2为事先生成图的文件名
    help histogram #查看对于该命令的详细说明
    #保存图
    graph save panel2 replace
    #表示将图片保存至默认路径,将已存在的panel2替换掉
    
  8. 生成新变量 (generate/gen/g):

    gen lnq = log(g+farmm)
    g lnq = log(g+farmm)	
    
    #虚拟变量的生成
    qy的取值为1,2,3  1代表东部,2代表中部,3代表西部
    g d_qy2=(qy==2)
    #如果是中部省,生成虚拟变量d_qy2=1,否则为0
    
  9. 安装第三方包:

    ssc install st0085_2  #安装第三方包
    help esttab  #找到esttab对应的软件包
    
  10. 数据分析:

    reg lnq lnarea lnfarmm, r   #pool回归
    estimates store POOL11   #est   sto POOL11
    xtreg lnq lnarea lnfarmm lnagchf, fe vce(cluster provi)
    #个体固定效应变截距模型--组内估计
    est sto FE1
    esttab POOL11 FE1, ar2(%8.4f) se(%8.4f)  star(*0.1 **0.05 ***0.01)
    #
    esttab using test.doc, ar2(%8.4f) se(%8.4f) brackets aic bic mtitles
    esttab using test1.xls, ar2(%8.4f) se(%8.4f) brackets aic bic mtitles replace       #默认展示最近一次回归的结果
    # (%8.4f)表示数据保留小数点后4位有效数字
    # star(*0.1  ** 0.05  *** 0.01) 显著性水平--默认也显示
    # barckets表示se放在中括号里--默认是小括号
    # ar2表示修正的R2--r2表示R2
    # se表示标准误
    # aic、bic是信息准则
    # mtitles表示把POOL11、FE1作为标题名,默认是被解释变量名
    # using test1.doc表示将回归结果保存至Word文档
    
    
    
  11. 变量重命名:

    rename larg large #将larg重命名为large
    
  12. 计算器功能:

    display log(2) #计算log(2)的值
    
  13. 线性回归:

    regress lntc lnq lnpl lnpk lnpf
    #对变量lntc lnq lnpl lnpk lnpf进行回归分析
    vce
    #显示估计系数的协方差矩阵
    predict lntchat
    #计算被解释变量的拟合值,并将其记为lntchat
    predict e1,residual
    #计算残差,并将其记为e1
    
  14. 自相关检验

    #DW检验:可检验一阶自相关(高阶无效),在回归后输入
    estat dwatson
    #LM检验:
    estat bgodfrey #1阶自相关检验
    estate bgodfrey,lags(2) #检验几阶自相关就在括号内输入几阶
    
  15. 异方差检验(更新中)

    在这里插入代码片
    

特殊情况的处理:

情况一:个体变量名非数值
例如,province 是个体变量名, year是时点变量名
(注:在运行面板数据的相关命令前,要运行下列命令)

第一步:

encode province, gen(id)
#生成新变量ID(取值为1,2,3...)来替代province
#若个体变量为1,2,3...整数,就无需使用encoder命令

第二步:

xtset id year
#本命令相当于告诉Stata, 该数据为面板数据

以下命令慎用

drop farmm #删除变量farmm
drop if q<=2000 #删除满足条件的数据
keep q area  #仅保留q、area两个变量
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值