威尔逊定理学习笔记

一、威尔逊定理内容及证明

内容

p p p 质数当且仅当 ( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)!\equiv-1\pmod p (p1)!1(modp)

证明

(1)充分性

p p p 是质数,则 ( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)!\equiv-1\pmod p (p1)!1(modp)

我们知道,在模奇素数 p p p 的剩余系下, 1 1 1 p − 1 p-1 p1 的逆元都存在。考虑到 x x − 1 ≡ 1 ( m o d p ) xx^{-1}\equiv 1\pmod p xx11(modp) ,原式可化简为:
( p − 1 ) ! = Π i − 1 ≠ i i × Π i − 1 = i i ≡ Π i − 1 = i i ( m o d p ) (p-1)!= \Pi_{i^{-1}\neq i} i\times \Pi_{i^{-1}=i}i\equiv\Pi_{i^{-1}=i}i\pmod p (p1)!=Πi1=ii×Πi1=iiΠi1=ii(modp)
因此需要考虑哪些数的逆元是其本身,即满足二次剩余 x 2 ≡ 1 ( m o d p ) x^2\equiv1\pmod p x21(modp) 。移向后因式分解可得
( x − 1 ) ( x + 1 ) ≡ 0 ( m o d p ) (x-1)(x+1)\equiv0\pmod p (x1)(x+1)0(modp)

解得 x = ± 1 x=\pm1 x=±1

1 1 1 p − 1 p-1 p1 p − 1 p-1 p1 个数中,除了 1 1 1 p − 1 p-1 p1 的逆元是本身外,对于 ∀ x ∈ [ 2 , p − 2 ] , ∃ y ∈ [ 2 , p − 2 ] \forall x\in [2,p-2],\exist y\in [2,p-2] x[2,p2],y[2,p2] 满足 x y ≡ 1 ( m o d p ) xy\equiv 1\pmod p xy1(modp) y ≠ x y\neq x y=x

综上, Π i − 1 = i i = 1 × ( p − 1 ) ≡ − 1 ( m o d p ) \Pi_{i^{-1}=i}i=1\times(p-1)\equiv-1\pmod p Πi1=ii=1×(p1)1(modp)

(2)必要性

( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)!\equiv-1\pmod p (p1)!1(modp),则 p p p 是质数。直接证明有些困难,因此采用反证法,假设 p p p 满足条件且为合数,推出矛盾“任何合数都不可能满足这个条件”。

p = 1 p=1 p=1

此时 ( p − 1 ) ! = 0 ! = 1 ≡ 0 ( m o d 1 ) (p-1)!=0!=1\equiv0\pmod 1 (p1)!=0!=10(mod1) ,不满足上述条件。

p = 4 p=4 p=4

此时 ( p − 1 ) ! = 3 ! = 6 ≡ 2 ( m o d 4 ) (p-1)!=3!=6\equiv2\pmod 4 (p1)!=3!=62(mod4) ,不满足上述条件。

p > 4 p>4 p>4 p p p 是完全平方数

不妨设 p = k 2 p=k^2 p=k2 ,显然 k > 2 k>2 k>2 。做差易得 p > 2 k p>2k p>2k
那么有
( p − 1 ) ! = 1 × ⋯ × k × ⋯ × 2 k × ⋯ × ( p − 1 ) = 2 k 2 × ( …   ) (p-1)!=1\times \dots\times k\times\dots\times2k\times \dots\times (p-1)=2k^2\times(\dots) (p1)!=1××k××2k××(p1)=2k2×()

p p p 的整数倍,因此 ( p − 1 ) ! ≡ 0 ( m o d p ) (p-1)!\equiv0\pmod p (p1)!0(modp)

p > 4 p>4 p>4 p p p 不是完全平方数

由于 p p p 不是完全平方数且不是质数,不妨设 p = a × b , a < b p=a\times b,a< b p=a×b,a<b
那么有
( p − 1 ) ! = 1 × ⋯ × a × ⋯ × b × ⋯ × ( p − 1 ) = ( a × b ) × ( …   ) (p-1)!=1\times\dots\times a\times\dots\times b\times \dots\times(p-1)=(a\times b)\times(\dots) (p1)!=1××a××b××(p1)=(a×b)×()

p p p 的整数倍,因此 ( p − 1 ) ! ≡ 0 ( m o d p ) (p-1)!\equiv0\pmod p (p1)!0(modp)

二、例题和代码

(1) HDU2973 YAPTCHA

题目大意:
T T T 组数据,求
∑ k = 1 n ⌊ ( 3 k + 6 ) ! + 1 ( 3 k + 7 ) − ⌊ ( 3 k + 6 ) ! ( 3 k + 7 ) ⌋ ⌋ \sum_{k=1}^{n}\Big\lfloor\frac{(3k+6)!+1}{(3k+7)}-\big\lfloor\frac{(3k+6)!}{(3k+7)}\big\rfloor\Big\rfloor k=1n(3k+7)(3k+6)!+1(3k+7)(3k+6)!

的值( T , n ⩽ 1 0 6 T,n\leqslant10^6 T,n106)。

题解

威尔逊定理模板题。
3 k + 7 = x 3k+7=x 3k+7=x 得:
原 式 = ∑ k = 1 n ⌊ ( x − 1 ) ! + 1 x − ⌊ ( x − 1 ) ! x ⌋ ⌋ 原式=\sum_{k=1}^{n}\Big\lfloor\frac{(x-1)!+1}{x}-\big\lfloor\frac{(x-1)!}{x}\big\rfloor\Big\rfloor =k=1nx(x1)!+1x(x1)!

x x x 为质数时,根据威尔逊定理有 ( x − 1 ) ! ≡ − 1 ( m o d x ) (x-1)!\equiv -1\pmod x (x1)!1(modx) ,即 ( x − 1 ) ! + 1 ≡ 0 ( m o d x ) (x-1)!+1\equiv0\pmod x (x1)!+10(modx) ,故 x ∣ ( x − 1 ) ! + 1 x\mid(x-1)!+1 x(x1)!+1 ,因此
( x − 1 ) ! + 1 x − ⌊ ( x − 1 ) ! x ⌋ = 1 \frac{(x-1)!+1}{x}-\big\lfloor\frac{(x-1)!}{x}\big\rfloor=1 x(x1)!+1x(x1)!=1

x x x 不是质数时,在证明威尔逊定理的必要性时有 ∀ x > 4 , ( x − 1 ) ! ≡ 0 ( m o d x ) \forall x > 4,(x-1)!\equiv0\pmod x x>4,(x1)!0(modx) ,因此 x ∣ ( x − 1 ) ! x\mid(x-1)! x(x1)! ,因此
⌊ ( x − 1 ) ! + 1 x − ⌊ ( x − 1 ) ! x ⌋ ⌋ = 0 \Big\lfloor\frac{(x-1)!+1}{x}-\big\lfloor\frac{(x-1)!}{x}\big\rfloor\Big\rfloor=0 x(x1)!+1x(x1)!=0

综上,所求的式子可以化简为
原 式 = ∑ k = 1 n [ x  is prime ] = ∑ k = 1 n [ 3 k + 7  is prime ] 原式=\sum_{k=1}^{n}\big[x\text{ is prime}\big]=\sum_{k=1}^{n}[3k+7\text{ is prime}] =k=1n[x is prime]=k=1n[3k+7 is prime]

使用筛法筛出素数后统计前缀和即可,代码如下。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e6 + 10;
bool vist[maxn];
int cnt;
int sum[maxn], prime[maxn];
int T, n;
void Euler(int n){
	vist[1] = true;
	for (int i = 2; i <= n; i ++){
		if (!vist[i]) prime[++ cnt] = i;
		for (int j = 1; j <= cnt && i * prime[j] <= n; j ++){
			vist[i * prime[j]] = true;
			if (prime[j] % i == 0) break;
		}
	}
	for (int i = 1; i < maxn; i ++) sum[i] = sum[i - 1] + (vist[3 * i + 7] == 0);
}
int main(){
	Euler(maxn - 1);
	cin >> T;
	while (T --){
		cin >> n;
		cout << sum[n] << endl;
	}
	return 0;
}

(2) HDU6608

题目大意:
T T T 组数据,给定质数 p p p ,求小于 p p p 的最大质数 q q q 并求下式的值( T ⩽ 10 , 1 0 9 ⩽ p ⩽ 1 0 14 T\leqslant 10,10^9\leqslant p\leqslant 10^{14} T10,109p1014)。
q !   m o d   p q! \bmod p q!modp

题解

由威尔逊定理
( p − 1 ) ! ≡ − 1 ( m o d p ) (p-1)!\equiv-1\pmod p (p1)!1(modp)

推导得
q ! × ( q + 1 ) × ( q + 2 ) × ⋯ × ( p − 1 ) ≡ − 1 ( m o d p ) q!\times(q+1)\times(q+2)\times\dots\times (p-1)\equiv-1\pmod p q!×(q+1)×(q+2)××(p1)1(modp)
q ! ≡ − ( q + 1 ) − 1 ( q + 2 ) − 1 × ⋯ × ( p − 1 ) − 1 ( m o d p ) q!\equiv-(q+1)^{-1}(q+2)^{-1}\times\dots\times(p-1)^{-1}\pmod p q!(q+1)1(q+2)1××(p1)1(modp)
因此从 p − 1 p-1 p1 开始倒序枚举,使用朴素的质数检验方法检验是否为质数并记录逆元的累乘,枚举到质数就输出并停止。不过观察到数据范围比较大,因此需要使用龟速乘,代码如下。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e7 + 5;
bool vist[maxn];
int cnt;
int prime[1000005];

void Euler(int n){
	for (int i = 2; i <= n; i ++){
		if (!vist[i]) prime[++ cnt] = i;
		for (int j = 1; j <= cnt && i * prime[j] <= n; j ++){
			vist[i * prime[j]] = true;
			if (i % prime[j] == 0) break;
		}
	}
}

int T;
long long n;

bool is_prime(long long x){
	for (int i = 1; i <= cnt && prime[i] * prime[i] <= x; i ++)
		if (x % prime[i] == 0) return false;
	return true;
}

long long sMul(long long a, long long b, long long MOD){
	long long ans = 0;
	while (b){
		if (b & 1) ans = (ans + a) % MOD;
		a = (a + a) % MOD;
		b >>= 1;
	}
	return ans;
}

long long qPow(long long a, long long b, long long MOD){
	long long ans = 1;
	while (b){
		if (b & 1) ans = sMul(ans, a, MOD);
		a = sMul(a, a, MOD);
		b >>= 1;
	}
	return ans;
}

long long get_inv(long long a, long long p){
	return qPow(a, p - 2, p);
}

int main(){
	std::ios::sync_with_stdio(false);
	cin.tie(0);
	Euler(maxn - 1);
	cin >> T;
	while (T --){
		cin >> n;
		long long ans = n - 1;
		for (long long i = n - 1; ; i --){
			bool ret = is_prime(i);
			if (ret){
				cout << ans << '\n';
				break;
			}
			ans = sMul(ans, get_inv(i, n), n);
		}
	}
	return 0;
} 
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值