威尔逊定理学习笔记

博客详细介绍了威尔逊定理的内容和证明过程,包括充分性和必要性两方面。此外,通过例题解释了威尔逊定理在解决模运算问题中的应用,并提供了相关编程题目的解决方案,涉及质数判断和逆元计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、威尔逊定理内容及证明

内容

ppp 质数当且仅当 (p−1)!≡−1(modp)(p-1)!\equiv-1\pmod p(p1)!1(modp)

证明

(1)充分性

ppp 是质数,则 (p−1)!≡−1(modp)(p-1)!\equiv-1\pmod p(p1)!1(modp)

我们知道,在模奇素数 ppp 的剩余系下,111p−1p-1p1 的逆元都存在。考虑到 xx−1≡1(modp)xx^{-1}\equiv 1\pmod pxx11(modp) ,原式可化简为:
(p−1)!=Πi−1≠ii×Πi−1=ii≡Πi−1=ii(modp) (p-1)!= \Pi_{i^{-1}\neq i} i\times \Pi_{i^{-1}=i}i\equiv\Pi_{i^{-1}=i}i\pmod p (p1)!=Πi1=ii×Πi1=iiΠi1=ii(modp)
因此需要考虑哪些数的逆元是其本身,即满足二次剩余 x2≡1(modp)x^2\equiv1\pmod px21(modp) 。移向后因式分解可得
(x−1)(x+1)≡0(modp) (x-1)(x+1)\equiv0\pmod p (x1)(x+1)0(modp)

解得 x=±1x=\pm1x=±1

111p−1p-1p1p−1p-1p1 个数中,除了 111p−1p-1p1 的逆元是本身外,对于 ∀x∈[2,p−2],∃y∈[2,p−2]\forall x\in [2,p-2],\exist y\in [2,p-2]x[2,p2],y[2,p2] 满足 xy≡1(modp)xy\equiv 1\pmod pxy1(modp)y≠xy\neq xy=x

综上,Πi−1=ii=1×(p−1)≡−1(modp)\Pi_{i^{-1}=i}i=1\times(p-1)\equiv-1\pmod pΠi1=ii=1×(p1)1(modp)

(2)必要性

(p−1)!≡−1(modp)(p-1)!\equiv-1\pmod p(p1)!1(modp),则 ppp 是质数。直接证明有些困难,因此采用反证法,假设 ppp 满足条件且为合数,推出矛盾“任何合数都不可能满足这个条件”。

p=1p=1p=1

此时 (p−1)!=0!=1≡0(mod1)(p-1)!=0!=1\equiv0\pmod 1(p1)!=0!=10(mod1) ,不满足上述条件。

p=4p=4p=4

此时 (p−1)!=3!=6≡2(mod4)(p-1)!=3!=6\equiv2\pmod 4(p1)!=3!=62(mod4) ,不满足上述条件。

p>4p>4p>4ppp 是完全平方数

不妨设 p=k2p=k^2p=k2 ,显然 k>2k>2k>2 。做差易得 p>2kp>2kp>2k
那么有
(p−1)!=1×⋯×k×⋯×2k×⋯×(p−1)=2k2×(… ) (p-1)!=1\times \dots\times k\times\dots\times2k\times \dots\times (p-1)=2k^2\times(\dots) (p1)!=1××k××2k××(p1)=2k2×()

ppp 的整数倍,因此 (p−1)!≡0(modp)(p-1)!\equiv0\pmod p(p1)!0(modp)

p>4p>4p>4ppp 不是完全平方数

由于 ppp 不是完全平方数且不是质数,不妨设 p=a×b,a<bp=a\times b,a< bp=a×b,a<b
那么有
(p−1)!=1×⋯×a×⋯×b×⋯×(p−1)=(a×b)×(… ) (p-1)!=1\times\dots\times a\times\dots\times b\times \dots\times(p-1)=(a\times b)\times(\dots) (p1)!=1××a××b××(p1)=(a×b)×()

ppp 的整数倍,因此 (p−1)!≡0(modp)(p-1)!\equiv0\pmod p(p1)!0(modp)

二、例题和代码

(1) HDU2973 YAPTCHA

题目大意:
TTT 组数据,求
∑k=1n⌊(3k+6)!+1(3k+7)−⌊(3k+6)!(3k+7)⌋⌋ \sum_{k=1}^{n}\Big\lfloor\frac{(3k+6)!+1}{(3k+7)}-\big\lfloor\frac{(3k+6)!}{(3k+7)}\big\rfloor\Big\rfloor k=1n(3k+7)(3k+6)!+1(3k+7)(3k+6)!

的值(T,n⩽106T,n\leqslant10^6T,n106)。

题解

威尔逊定理模板题。
3k+7=x3k+7=x3k+7=x 得:
原式=∑k=1n⌊(x−1)!+1x−⌊(x−1)!x⌋⌋ 原式=\sum_{k=1}^{n}\Big\lfloor\frac{(x-1)!+1}{x}-\big\lfloor\frac{(x-1)!}{x}\big\rfloor\Big\rfloor =k=1nx(x1)!+1x(x1)!

xxx 为质数时,根据威尔逊定理有 (x−1)!≡−1(modx)(x-1)!\equiv -1\pmod x(x1)!1(modx) ,即 (x−1)!+1≡0(modx)(x-1)!+1\equiv0\pmod x(x1)!+10(modx) ,故 x∣(x−1)!+1x\mid(x-1)!+1x(x1)!+1 ,因此
(x−1)!+1x−⌊(x−1)!x⌋=1 \frac{(x-1)!+1}{x}-\big\lfloor\frac{(x-1)!}{x}\big\rfloor=1 x(x1)!+1x(x1)!=1

xxx 不是质数时,在证明威尔逊定理的必要性时有 ∀x>4,(x−1)!≡0(modx)\forall x > 4,(x-1)!\equiv0\pmod xx>4,(x1)!0(modx) ,因此 x∣(x−1)!x\mid(x-1)!x(x1)! ,因此
⌊(x−1)!+1x−⌊(x−1)!x⌋⌋=0 \Big\lfloor\frac{(x-1)!+1}{x}-\big\lfloor\frac{(x-1)!}{x}\big\rfloor\Big\rfloor=0 x(x1)!+1x(x1)!=0

综上,所求的式子可以化简为
原式=∑k=1n[x is prime]=∑k=1n[3k+7 is prime] 原式=\sum_{k=1}^{n}\big[x\text{ is prime}\big]=\sum_{k=1}^{n}[3k+7\text{ is prime}] =k=1n[x is prime]=k=1n[3k+7 is prime]

使用筛法筛出素数后统计前缀和即可,代码如下。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 3e6 + 10;
bool vist[maxn];
int cnt;
int sum[maxn], prime[maxn];
int T, n;
void Euler(int n){
	vist[1] = true;
	for (int i = 2; i <= n; i ++){
		if (!vist[i]) prime[++ cnt] = i;
		for (int j = 1; j <= cnt && i * prime[j] <= n; j ++){
			vist[i * prime[j]] = true;
			if (prime[j] % i == 0) break;
		}
	}
	for (int i = 1; i < maxn; i ++) sum[i] = sum[i - 1] + (vist[3 * i + 7] == 0);
}
int main(){
	Euler(maxn - 1);
	cin >> T;
	while (T --){
		cin >> n;
		cout << sum[n] << endl;
	}
	return 0;
}

(2) HDU6608

题目大意:
TTT 组数据,给定质数 ppp ,求小于 ppp 的最大质数 qqq 并求下式的值(T⩽10,109⩽p⩽1014T\leqslant 10,10^9\leqslant p\leqslant 10^{14}T10,109p1014)。
q! mod p q! \bmod p q!modp

题解

由威尔逊定理
(p−1)!≡−1(modp) (p-1)!\equiv-1\pmod p (p1)!1(modp)

推导得
q!×(q+1)×(q+2)×⋯×(p−1)≡−1(modp) q!\times(q+1)\times(q+2)\times\dots\times (p-1)\equiv-1\pmod p q!×(q+1)×(q+2)××(p1)1(modp)
q!≡−(q+1)−1(q+2)−1×⋯×(p−1)−1(modp) q!\equiv-(q+1)^{-1}(q+2)^{-1}\times\dots\times(p-1)^{-1}\pmod p q!(q+1)1(q+2)1××(p1)1(modp)
因此从 p−1p-1p1 开始倒序枚举,使用朴素的质数检验方法检验是否为质数并记录逆元的累乘,枚举到质数就输出并停止。不过观察到数据范围比较大,因此需要使用龟速乘,代码如下。

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e7 + 5;
bool vist[maxn];
int cnt;
int prime[1000005];

void Euler(int n){
	for (int i = 2; i <= n; i ++){
		if (!vist[i]) prime[++ cnt] = i;
		for (int j = 1; j <= cnt && i * prime[j] <= n; j ++){
			vist[i * prime[j]] = true;
			if (i % prime[j] == 0) break;
		}
	}
}

int T;
long long n;

bool is_prime(long long x){
	for (int i = 1; i <= cnt && prime[i] * prime[i] <= x; i ++)
		if (x % prime[i] == 0) return false;
	return true;
}

long long sMul(long long a, long long b, long long MOD){
	long long ans = 0;
	while (b){
		if (b & 1) ans = (ans + a) % MOD;
		a = (a + a) % MOD;
		b >>= 1;
	}
	return ans;
}

long long qPow(long long a, long long b, long long MOD){
	long long ans = 1;
	while (b){
		if (b & 1) ans = sMul(ans, a, MOD);
		a = sMul(a, a, MOD);
		b >>= 1;
	}
	return ans;
}

long long get_inv(long long a, long long p){
	return qPow(a, p - 2, p);
}

int main(){
	std::ios::sync_with_stdio(false);
	cin.tie(0);
	Euler(maxn - 1);
	cin >> T;
	while (T --){
		cin >> n;
		long long ans = n - 1;
		for (long long i = n - 1; ; i --){
			bool ret = is_prime(i);
			if (ret){
				cout << ans << '\n';
				break;
			}
			ans = sMul(ans, get_inv(i, n), n);
		}
	}
	return 0;
} 
### 关于 Codeforces 平台上与威尔逊定理相关的编程问题及解决方案 #### 威尔逊定理简介 威尔逊定理是一个重要的数论结论,它表明:如果 $p$ 是一个质数,则 $(p-1)! \equiv -1 \ (\text{mod}\ p)$。换句话说,$(p-1)! + 1$ 可被 $p$ 整除[^5]。这一性质在许多涉及质数检测和大数运算的算法竞赛题目中有广泛的应用。 --- #### 经典题目解析与实现 以下是几道典型的 Codeforces 题目以及它们基于威尔逊定理的解决方法: --- ##### **题目一:Codeforces 1295D** 该题的核心在于判断给定区间内有多少个数满足某种特殊条件,而这些条件可以通过威尔逊定理简化为对阶乘取模的结果分析[^6]。 ###### 解决方案 为了高效地处理大规模数据,我们可以预先计算出所有可能需要用到的阶乘值及其对应的模意义下的结果。具体代码如下所示: ```cpp #include <bits/stdc++.h> using namespace std; typedef long long ll; const int MOD = 1e9 + 7; ll factorial_mod(ll n, ll p) { if (n >= p) return 0; ll result = 1; for (ll i = 1; i <= n; ++i) { result = (result * i) % p; } return result; } bool is_prime_wilson(ll p) { if (factorial_mod(p - 1, p) != p - 1) return false; return true; } int main() { ios::sync_with_stdio(false); cin.tie(0); ll l, r; cin >> l >> r; int count = 0; for (ll i = max(l, 2LL); i <= r; ++i) { if (is_prime_wilson(i)) { count++; } } cout << count << "\n"; } ``` 这段程序首先定义了一个用于计算阶乘并对指定素数取模的功能函数 `factorial_mod`,接着借助这个工具实现了依据威尔逊定理判定某个自然数是否为素数的逻辑[^6]。 --- ##### **题目二:Prime Number Theorem Application** 虽然这不是一道具体的 Codeforces 题目名称,但它代表了一类常见的挑战场景——即如何利用包括但不限于威尔逊在内的各种经典数学理论去优化复杂度较高的枚举过程[^7]。 ###### 实现细节 当面临需要频繁验证多个候选数字是否属于素数集合的任务时,单纯依靠试除法往往难以达到理想的时间效率标准。此时引入诸如埃拉托斯特尼筛法或者更高级别的线性筛技术固然是一种不错的选择;然而,在某些特定条件下(例如仅需关心少量极大数值的情况),直接调用威尔逊定理反而能带来意想不到的优势。 示例代码片段展示如下: ```python def wilsons_theorem_test(n): from math import factorial if n < 2: return False elif pow(factorial(n - 1), 1, n) == n - 1: return True else: return False # Example Usage print(wilsons_theorem_test(11)) # Output: True ``` 在这里我们采用了 Python 内置库中的高精度整数运算能力来模拟整个流程,尽管如此仍需注意实际比赛中应尽量避免因过度依赖此类特性而导致性能瓶颈的发生[^7]。 --- #### 总结 综上所述,通过对威尔逊定理深入理解并灵活运用到不同类型的算法设计当中,不仅可以帮助参赛者更好地应对那些表面上看似棘手但实际上蕴含深刻规律可循的问题,而且还有助于培养更加严谨缜密的思维习惯! ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值