原题:
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
做这个题时,有一个盲点,就是不能只判断root的左右子树的高度,而是要判断每一个节点的左右子树的高度差,只有在这个树中,有一个节点的左右子树的高度差>1,就需要返回false,因此需要记录这棵树每个节点的情况,我的方法:
1 :用递归的方法,假设每次判定到的节点为current
2 : 判断current的左右子树的高度,如果高度差<=1,则返回max(坐,右)+1;如果高度差大于1,或者左右子树有一个的高度差为-1,则返回-1(KEY),用来记录,说明这棵树已经是非平衡的了。。。
代码如下(60 ms):
class Solution {
public:
bool isBalanced(TreeNode *root) {
if (!root) return true;
else {
int left = height(root->left);
int right = height(root->right);
if(left==-1||right==-1) return false;
return (left-right)>1 || (left-right)<-1 ? false:true;
}
}
int height (TreeNode * root){
if(!root) return 0;
else if(root->left==NULL && root->right==NULL){
return 1;
}
else {
int left = height(root->left);
int right= height(root->right);
if(left ==-1 || right == -1 || left-right>1 || right-left>1) return -1;
return left>right?left+1:right+1;
}
}
};