- 博客(2)
- 收藏
- 关注
原创 深度残差收缩网络(从信号降噪的角度进行理解)
本文探讨了深度残差收缩网络的另一种理解方式。传统信号降噪算法的常见步骤是:① 采用某种信号变换方法(例如小波、经验模态分解),将含噪信号变换到另外一种形态(例如小波系数、本征模态分量等)。在这些形态中,接近于0的是噪声特征,幅值较大的是有用特征。② 然后,采用软阈值化,将噪声特征置为0。③ 最后,进行信号的反变换,获得降噪后的信号。但是,如何保证在变换形态中,故障成分的幅值较大,噪声成分的幅值接近0呢?如何选取软阈值化的阈值呢?这需要大量信号处理方面的专业知识和经验。
2021-07-29 20:09:18 7457 1
翻译 (全文翻译)基于深度残差收缩网络的故障诊断Deep Residual Shrinkage Networks for Fault Diagnosis
M. Zhao, S. Zhong, X. Fu, B. Tang, M. Pecht, Deep residual shrinkage networks for fault diagnosis, IEEE Transactions on Industrial Informatics, vol. 16, no. 7, pp. 4681-4690, 2020.论文原文:https://ieeexplore.ieee.org/document/8850096相关代码:https://github.com/z
2021-07-29 19:37:34 4363 5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人