- 博客(5)
- 资源 (1)
- 收藏
- 关注
原创 最小二乘的概率解释(最大似然)
基于高斯函数的最大似然等价于最小二乘假设输入和目标变量之间的关系为:y(i)=θTx(i)+ε(i)y^{(i)}=\theta^Tx^{(i)}+\varepsilon^{(i)} 其中 ε(i)∼(0,δ2)\varepsilon^{(i)}\sim\mathcal N(0,\delta^2) , p(ε(i))=12π√δe−(ε(i))22δ2p(\varepsilon^{(i)
2018-01-07 16:43:58 370
原创 线性回归(Linear Regression)
cs229-Part1 符号声明: x(i)x^{(i)}:输入(input)或特征(features) y(i)y^{(i)}:输出(output)或目标(target) (x(i),y(i))(x^{(i)},y^{(i)}):训练样本(training example) {(x(i),y(i));i=1,...m}\{(x^{(i)},y^{(i)});i=1,...m\}:训练
2018-01-07 14:16:05 323
原创 matlab产生正定矩阵
上一篇文章中介绍了如何用matlab产生对称矩阵,在写paper时我们也经常遇到半正定矩阵,下面介绍一下产生正定矩阵的方法。正定矩阵的有一个非常有用的性质:特征值全部大于零(半正定矩阵特征值全部大于等于零)。如果A的特征值为a,可知A'*A的特征值为a的平方。因此根据对称矩阵的产生方法我们可以产生半正定矩阵。1.产生半正定矩阵>> A=randn(3);>> A=
2016-10-25 09:27:53 22577
原创 向量范数、矩阵范数
本篇文章主要是对常用范数进行一个系统的总结。内容主要来自于矩阵论这本书和知乎上’魏通‘的回答,本文进行了补充和总结。知乎’魏通‘关于范数的回答范数是内积空间中长度概念的推广。注意:如果V是实数域则范数为x的绝对值平方和再开方,如果是复数域为x的模长平方和再开方。其中 为A的共轭转置。matlab中A’ 为共轭转置。A.' 为普通转置。设
2016-10-18 20:21:27 2632
原创 matlab产生对称矩阵
最近发现很多人产生对称矩阵的方法并不是很好,估计并没有理解对称矩阵的本质。其实对称矩阵没什么可说的可以自行百度。这里有几个关于对称矩阵重要性质要知道:1. 如果A为对称矩阵则必须保证A为方阵。2. 对于任何方阵X,X+XT是对称矩阵。(这里就提到了产生对称矩阵的方法)。3. 对角阵都是对称矩阵。(最简单的对称矩阵)。根据上述性质可以知道用matl
2016-10-18 16:53:43 43581
最小生成树算法求城市通信网最小花费
2019-10-09
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人