哈夫曼编码与哈夫曼树(C语言实现)
什么是编码
定长编码
在ASCII编码里,字符 ‘a’ = 97 = (0110 0001)2,字符 ‘0’ = 48 = (0011 0000)2
那么有这么一条信息,“aa00”,通过ASCII编码的二进制来表示的话就等于 “01100001、01100001、00110000、00110000”,一台计算机传输到另一台计算机,面对当前这个"aa00"这个信息,就需要传输32个比特位
假设计算机的网络是32 bit / s,所用时:1s
特定场景:只有a,b,0,1四种字符需要传输,那么我们需要用ASCII编码吗?
我们完全可以这么设计a:00,b:01,0:10,1:11,那么在面对"aa00"这个信息的时候,就可以这么表示"00001010",假设在带宽不变的情况下,只需要传输0.25s
以上的编码,都是定长编码(对于每一个字符,编码长度相同,这就是定长编码,例如UTF-16)
变长编码
例如UTF-8编码,是变长编码(对于每一个字符,编码长度不同,这就是变长编码)
变长编码应用场景
在特定场景下,只有四种字符:a,b,0,1。a出现的概率:0.8,b出现的概率:0.05,0出现的概率:0.1,1出现的概率:0.05
在这提到一个概念——平均编码长度:每种字符编码长度 * 每种字符出现的概率
p
i
p_i
pi :字符出现的概率,
l
i
l_i
li:字符编码长度
a
v
g
(
l
)
=
∑
p
i
∗
l
i
avg(l) = \sum p_i\ *\ l_i
avg(l)=∑pi ∗ li
假设,平均编码长度 = 1.16,估算传输100个字符,需要传输116个比特位
哈夫曼编码
- 首先,统计得到每一种字符的概率
- 将n个字符,建立成一棵哈夫曼树
- 每一个字符,都落在叶子节点上
- 按照左 0,右 1 的形式,将编码读取出来
假设当前统计后有a,b,0,1四种字符,a的概率:0.8,b的概率:0.05,0的概率:0.1,c的概率:0.05
需要将四个字符作为四个叶子节点连接到一棵树上,每次拿出概率最小的两个字符连成一棵子树
此时,概率最低的两个节点为b和1生成的新节点,以及字符0
最后,将a字符与0.2的节点合成一棵子树
可以发现,四个字符都在叶子节点的位置,因为所有字符都落在叶子节点上,所以我们没有任何一个字符是另一个字符的前缀
a:0,b:110,0:10,1:111,平均编码长度: 1 ∗ 0.8 + 3 ∗ 0.05 + 2 ∗ 0.1 + 3 ∗ 0.05 = 1.3 1 * 0.8 + 3 * 0.05 + 2 * 0.1 + 3 * 0.05 = 1.3 1∗0.8+3∗0.05+2∗0.1+3∗0.05=1.3
结论:哈夫曼编码是最优的变长编码
C语言实现哈夫曼树
#include <stdio.h>
#include <stdlib.h>
#define swap(a, b) {\
__typeof(a) __tmp = a;\
a = b; b = __tmp;\
}
typedef struct Node {
char ch; //当前节点代表的字符
double p; //当前节点的概率值
struct Node *lchild, *rchild;
} Node;
Node *getNewNode(char ch, double per) {
Node *p = (Node *)malloc(sizeof(Node));
p->ch = ch;
p->p = per;
p->lchild = p->rchild = NULL;
return p;
}
// 两个节点合并
Node *CombinNode(Node *a, Node *b) {
Node *p = getNewNode(0, a->p + b->p);
p->lchild = a;
p->rchild = b;
return p;
}
void pick_min(Node **arr, int n) {
for (int j = n - 1; j >= 0; j --) {
if (arr[n]->p > arr[j]->p) {
swap(arr[n], arr[j]);
}
}
return ;
}
// 获得一棵哈夫曼树(可以用堆优化)
Node *getHaffmanTree(Node **arr, int n) {
// n个节点需要合并n - 1次
for (int i = 1; i < n; i ++) {
// 找出当前的概率最小的字符
pick_min(arr, n - i);
// 找出当前的概率次小的字符
pick_min(arr, n - i - 1);
// 将这两个节点合并
arr[n - i - 1] = CombinNode(arr[n - i], arr[n - i - 1]);
}
return arr[0];
}
//
void __output_code(Node *root, char *str, int k) {
str[k] = 0;
// 如果是叶子节点,直接输出
if (root->lchild == NULL && root->rchild == NULL) {
printf("%c %s\n", root->ch, str);
return ;
}
str[k] = '0';
__output_code(root->lchild, str, k + 1);
str[k] = '1';
__output_code(root->rchild, str, k + 1);
return ;
}
// 输出每个字符的哈夫曼编码
void output_code(Node *root) {
char str[100];
__output_code(root, str, 0);
return ;
}
//销毁
void clear(Node *root) {
if (!root) return ;
clear(root->lchild);
clear(root->rchild);
free(root);
return ;
}
int main() {
int n;
scanf("%d", &n);
Node **arr;
arr = (Node **)malloc(sizeof(Node *) * n);
for (int i = 0; i < n; i ++) {
char ch[10];
double p;
scanf("%s%lf", ch, &p);
arr[i] = getNewNode(ch[0], p);
}
Node *root = getHaffmanTree(arr, n);
output_code(root);
clear(root);
free(arr);
return 0;
}