哈夫曼编码与哈夫曼树(C语言实现)

文章介绍了哈夫曼编码的概念,通过对比定长编码(如ASCII编码)和变长编码(如UTF-8编码),阐述了变长编码在数据传输中的优势。在特定场景下,哈夫曼编码能通过构建最优的二叉树结构,根据字符出现概率生成编码,从而降低平均编码长度,提高传输效率。文章还提供了C语言实现哈夫曼树和编码的代码示例。
摘要由CSDN通过智能技术生成

哈夫曼编码与哈夫曼树(C语言实现)

什么是编码

定长编码

在ASCII编码里,字符 ‘a’ = 97 = (0110 0001)2,字符 ‘0’ = 48 = (0011 0000)2

那么有这么一条信息,“aa00”,通过ASCII编码的二进制来表示的话就等于 “01100001、01100001、00110000、00110000”,一台计算机传输到另一台计算机,面对当前这个"aa00"这个信息,就需要传输32个比特位

假设计算机的网络是32 bit / s,所用时:1s

特定场景:只有a,b,0,1四种字符需要传输,那么我们需要用ASCII编码吗?

我们完全可以这么设计a:00,b:01,0:10,1:11,那么在面对"aa00"这个信息的时候,就可以这么表示"00001010",假设在带宽不变的情况下,只需要传输0.25s

以上的编码,都是定长编码(对于每一个字符,编码长度相同,这就是定长编码,例如UTF-16)

变长编码

例如UTF-8编码,是变长编码(对于每一个字符,编码长度不同,这就是变长编码)

变长编码应用场景

在特定场景下,只有四种字符:a,b,0,1。a出现的概率:0.8,b出现的概率:0.05,0出现的概率:0.1,1出现的概率:0.05

在这提到一个概念——平均编码长度:每种字符编码长度 * 每种字符出现的概率

p i p_i pi :字符出现的概率, l i l_i li:字符编码长度
a v g ( l ) = ∑ p i   ∗   l i avg(l) = \sum p_i\ *\ l_i avg(l)=pi  li

假设,平均编码长度 = 1.16,估算传输100个字符,需要传输116个比特位

哈夫曼编码

  1. 首先,统计得到每一种字符的概率
  2. 将n个字符,建立成一棵哈夫曼树
  3. 每一个字符,都落在叶子节点上
  4. 按照左 0,右 1 的形式,将编码读取出来

假设当前统计后有a,b,0,1四种字符,a的概率:0.8,b的概率:0.05,0的概率:0.1,c的概率:0.05

需要将四个字符作为四个叶子节点连接到一棵树上,每次拿出概率最小的两个字符连成一棵子树

在这里插入图片描述

此时,概率最低的两个节点为b和1生成的新节点,以及字符0

在这里插入图片描述

最后,将a字符与0.2的节点合成一棵子树

在这里插入图片描述

可以发现,四个字符都在叶子节点的位置,因为所有字符都落在叶子节点上,所以我们没有任何一个字符是另一个字符的前缀

a:0,b:110,0:10,1:111,平均编码长度: 1 ∗ 0.8 + 3 ∗ 0.05 + 2 ∗ 0.1 + 3 ∗ 0.05 = 1.3 1 * 0.8 + 3 * 0.05 + 2 * 0.1 + 3 * 0.05 = 1.3 10.8+30.05+20.1+30.05=1.3

结论哈夫曼编码是最优的变长编码

C语言实现哈夫曼树

#include <stdio.h>
#include <stdlib.h>

#define swap(a, b) {\
    __typeof(a) __tmp = a;\
    a = b; b = __tmp;\
}

typedef struct Node {
    char ch;    //当前节点代表的字符
    double p;   //当前节点的概率值
    struct Node *lchild, *rchild;
} Node;

Node *getNewNode(char ch, double per) {
    Node *p = (Node *)malloc(sizeof(Node));
    p->ch = ch;
    p->p = per;
    p->lchild = p->rchild = NULL;
    return p;
}

// 两个节点合并
Node *CombinNode(Node *a, Node *b) {
    Node *p = getNewNode(0, a->p + b->p);
    p->lchild = a;
    p->rchild = b;
    return p;
}


void pick_min(Node **arr, int n) {
    for (int j = n - 1; j >= 0; j --) {
        if (arr[n]->p > arr[j]->p) {
            swap(arr[n], arr[j]);
        }
    }
    return ;
}

// 获得一棵哈夫曼树(可以用堆优化)
Node *getHaffmanTree(Node **arr, int n) {
    // n个节点需要合并n - 1次
    for (int i = 1; i < n; i ++) {
        // 找出当前的概率最小的字符
        pick_min(arr, n - i);
        // 找出当前的概率次小的字符
        pick_min(arr, n - i - 1);
        // 将这两个节点合并
        arr[n - i - 1] = CombinNode(arr[n - i], arr[n - i - 1]);
    }
    return arr[0];
}

//
void __output_code(Node *root, char *str, int k) {
    str[k] = 0;
    // 如果是叶子节点,直接输出
    if (root->lchild == NULL && root->rchild == NULL) {
        printf("%c %s\n", root->ch, str);
        return ;
    }
    str[k] = '0';
    __output_code(root->lchild, str, k + 1);
    str[k] = '1';
    __output_code(root->rchild, str, k + 1);
    return ;
}

// 输出每个字符的哈夫曼编码
void output_code(Node *root) {
    char str[100];
    __output_code(root, str, 0);
    return ;
}

//销毁
void clear(Node *root) {
    if (!root) return ;
    clear(root->lchild);
    clear(root->rchild);
    free(root);
    return ;
}

int main() {
    int n;
    scanf("%d", &n);
    Node **arr;
    arr = (Node **)malloc(sizeof(Node *) * n);
    for (int i = 0; i < n; i ++) {
        char ch[10];
        double p;
        scanf("%s%lf", ch, &p);
        arr[i] = getNewNode(ch[0], p);
    }
    Node *root = getHaffmanTree(arr, n);
    output_code(root);
    clear(root);
    free(arr);
    return 0;
}
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值