python 中 set 和 dict 的实现原理

1. dict 和 list 查找性能的比较

from random import randint


def load_list_data(total_nums, target_nums):
    """
    从文件中读取数据,以list的方式返回
    :param total_nums: 读取的数量
    :param target_nums: 需要查询的数据的数量
    """
    all_data = []
    target_data = []
    file_name = "G:/慕课网课程/AdvancePython/fbobject_idnew.txt"
    with open(file_name, encoding="utf8", mode="r") as f_open:
        for count, line in enumerate(f_open):
            if count < total_nums:
                all_data.append(line)
            else:
                break

    for x in range(target_nums):
        random_index = randint(0, total_nums)
        if all_data[random_index] not in target_data:
            target_data.append(all_data[random_index])
            if len(target_data) == target_nums:
                break

    return all_data, target_data

def load_dict_data(total_nums, target_nums):
    """
    从文件中读取数据,以dict的方式返回
    :param total_nums: 读取的数量
    :param target_nums: 需要查询的数据的数量
    """
    all_data = {}
    target_data = []
    file_name = "G:/慕课网课程/AdvancePython/fbobject_idnew.txt"
    with open(file_name, encoding="utf8", mode="r") as f_open:
        for count, line in enumerate(f_open):
            if count < total_nums:
                all_data[line] = 0
            else:
                break
    all_data_list = list(all_data)
    for x in range(target_nums):
        random_index = randint(0, total_nums-1)
        if all_data_list[random_index] not in target_data:
            target_data.append(all_data_list[random_index])
            if len(target_data) == target_nums:
                break

    return all_data, target_data


def find_test(all_data, target_data):
    #测试运行时间
    test_times = 100
    total_times = 0
    import time
    for i in range(test_times):
        find = 0
        start_time = time.time()
        for data in target_data:
            if data in all_data:
                find += 1
        last_time = time.time() - start_time
        total_times += last_time
    return total_times/test_times


if __name__ == "__main__":
    all_data, target_data = load_list_data(10000, 1000)
    # all_data, target_data = load_list_data(100000, 1000)
    # all_data, target_data = load_list_data(1000000, 1000)


    # all_data, target_data = load_dict_data(10000, 1000)
    # all_data, target_data = load_dict_data(100000, 1000)
    # all_data, target_data = load_dict_data(1000000, 1000)
    last_time = find_test(all_data, target_data)
    print(last_time)



由上可以得出结论:

(1)dict的查找性能远远大于list

(2) 在list中,随着list数据亮的增大,查找的时间也会增大; 在 dict中,查找元素的时间不会随着数据量的增大而增大,其时间复杂度为O(1)

2. 为什么 dict的查找性能会远远的大于 list呢?

是因为dict 中的 key 和set 中的元素值都是 可hash的。

以dict为例,原理如下所示:

dict中建立的hash表如下:

                                                                         图1

hash表的查询:

                                                                          图2

故:

(1) dict的key 或者 set的值都必须是可hash的

不可变对象,都是可hash的,str,fronzenset, tuple, 自己实现的类(带有__hash__魔法函数)

(2) dict的内存花销大(hash简单的来说即映射,如图1所示,映射之后,不可能是连续的存在内存空间中的,总有一些内存时空的,当发现内存空间中的“空”只有1/3时,便会触发扩容操作,以免引起hash冲突),但是查询速度快。自定义的对象,或者python内部的对象都是dict包装的。

(3)dict的存储顺序和元素的添加顺序有关

(4)添加的数据有可能改变已有的数据顺序(扩容时,需要将原来的dict,复制移动到新的内存空间,此时将“挤出”已有的“空”,所以每个key的偏移可能改变)

 

 

没有更多推荐了,返回首页