数据结构学习笔记:马踏棋盘

本文介绍了如何使用深度优先搜索和贪心算法解决马踏棋盘问题。通过定义坐标结构体,判断越界,利用栈进行回溯,以及通过排序选择出度最小的后继点来优化路径选择,降低回溯次数,从而提高程序效率。在实际编程中,作者发现冒泡排序限制了效率,提出可使用更优的排序算法进一步提升性能。
摘要由CSDN通过智能技术生成

课题描述:

          从任意初始位置开始,将象棋中的马按照移动规则走完尺寸为8*8的棋盘。运算完成后输出正确路径。

课题分析与设计方案:

         针对题目,我们来一步一步地进行分析。首先,从题目我们可以很容易分析出“马踏棋盘”问题实际上是实现一个深度优先搜索的过程。马在每一次进行移动的时候,有八个后继点供选择(其中有的后继点越界或已经走过,需要加入判断函数来筛选合法后继点)。那么就定义一个结构体来存储坐标:

然后是判断坐标是否越界的函数:


知道了每一步的合法后继点,那么马就可以一路飞奔在棋盘上。但是,随着步数的增多,每个坐标可以选的后继点就越来越少,我们就多考虑一点,如果马走入死路了怎么办,同学们肯定会说,走错了就回头呗,对!当马走进死路的时候,我们就需要让马回头,回到上一步重新再选择一条路走,为了达到这个目的,就需要用到栈结构来保存马已经走过的路径。马每走一步,就将坐标压栈,需要回溯时就弹出栈顶元素。

在路径回溯后,重新选择后继点的时候,需要将已经走过的错误后继点屏蔽掉(总不能一错再错吧~),为了节省空间,我们将每一步的错误后继点保存,只需要将每个点的八个后继点根据相对位置来编号,每次按照序号来大小来确定该走那条路,比如当第一次走的是1号后继点,但到下一步时发现是死路,那么回溯到这一步时就根据错误后继点坐标和回溯的坐标来确定是1号后继点,然后选取当前坐标的2号后继点即可。


         有了回溯之后就不用怕马走入死路的情况,还有一种情况就是马在回溯后发现除了错误的后继点,就没有合法的后继点可选,那么此时依旧判断为死路,继续回溯,直到有合法后继点可选为止。

         在完成以上步骤后,马踏棋盘问题的主体我们就分析完毕了。接下来,我们按照上面说过的思路编写程序。当时我在编写完程序运行的时候,满心欢喜地期待正确答案的出现,结果我等了很久都没有结果出现(当时以为程序进入了死循环,查错查了好久....)。我们对题目进一步分析后就会发现,8*8的棋盘共有64个格子,如果按照深度优先搜索算法,将某一点的所有走法全部遍历一遍,那么计算机需要进行的运算量是很庞大的。所以,为了提高程序运行的效率,我们需要对算法进行改进。

         马在棋盘中的每一个位置都有多个后继点可供选择,如果我们仅仅按照深度优先搜索来简单的按顺序选择后继,那么我们的小马走入死路的几率是很大的,也就是说需要回溯的次数会很多。针对这个问题,我们就使用贪心算法来对后继路径的选择进行改进,贪心算法的核心就是选择局部最优解。我们分析一下就会发现,棋盘里的每一个坐标的后继点同时也是这个坐标的前驱点,如果一个坐标的后继点越少,说明它的前驱点越少,也就说明这个点被进入的机会就越少,例如位于棋盘的四个角的点,它的合法后继只有两个,也就是说只有两个位置可以使马进入这个点,这样一来,在移动过程中遗漏这些点的几率就很大,这样就会导致马很容易走入错误路径。俗话说,把难走的路先走了,后面的路就会顺畅很多。所以,我们需要在选择后继点时优先选择这些难以进入的点,这样就会极大的减少回溯的次数,对提高程序的效率非常有帮助。一个点的后继点中,出度最小的点就是局部最优解

        为了选择后继点中出度最小的点,我们需要在每走一步之前,对该点的后继点根据出度进行排序。


        之所以只对序号在num之后的点进行排序,就是为了上面提到的,在回溯时将错误路径屏蔽掉,避免死循环。

       

总结

        在使用贪心算法改进之后,程序效率提高的不是一点半点,运行后瞬间就得出了正确走法。当然,程序需要改进的地方还有太多,比如在对后继点排序的时候,我只用了最简单最耗时的冒泡排序,如果使用更好的排序算法,程序运行效率会进一步提升。

        解决问题的过程就是学习的过程,题目虽然简单,但经过思索解决问题也是对自己很好地提升。












评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值