A
题意:有一队人,其中有两个仇人,你的任务是在给定的交换次数的情况下,让这俩人离得越远越好,交换一次是相邻两两交换。
#include <cstdio>
#include <vector>
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define mod 1e9+7
#define N 1000001
#define inf 0x3f3f3f3f
const double PI = atan(1.0)*4.0;
typedef long long ll;
//char a[N],b[N];
int main()
{
std::ios::sync_with_stdio(false);
// freopen("E:\\in.txt","r",stdin);
int t;
cin>>t;
while(t--)
{
int a,b,c,d;
cin>>a>>b>>c>>d;
if(d<c)swap(d,c);
int x=c-1;
int y=a-d;
if((x+y)<=b)
cout<<a-1<<endl;
else
cout<<d-c+b<<endl;
}
}
B
跟昨天的题一样。
C
题意:
给定一段数,问距离最近的两个相同的数的距离
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
using namespace std;
#define mod 1e9+7
#define N 200005
#define inf 0x3f3f3f3f
const double PI = atan(1.0)*4.0;
typedef long long ll;
int a[N],dp[N],pos[N];
int main()
{
std::ios::sync_with_stdio(false);
// freopen("E:\\in.txt","r",stdin);
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
{dp[i]=inf;pos[i]=0;}
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
for(int i=1;i<=n;i++)
{ if(pos[a[i]]!=0)
dp[a[i]]=min(dp[a[i]],i-pos[a[i]]+1);
pos[a[i]]=i;
}int minn=inf;
for(int i=1;i<=n;i++)
minn=min(dp[i],minn);
if(minn==inf)cout<<-1<<endl;
else cout<<minn<<endl;
}
}
进化,降低了时间复杂度
#include <queue>
#include <cstring>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <stack>
#include <queue>
#include <cstdio>
using namespace std;
#define mod 1e9+7
#define N 200005
#define inf 0x3f3f3f3f
const double PI = atan(1.0)*4.0;
typedef long long ll;
int a[N],pos[N],dp=inf;
int main()
{
std::ios::sync_with_stdio(false);
// freopen("E:\\in.txt","r",stdin);
// int a[N],pos[N],dp;
int t;
cin>>t;
while(t--)
{dp=inf;
int n;
cin>>n;
for(int i=1;i<=n;i++)
{pos[i]=0;}
for(int i=1;i<=n;i++)
{
cin>>a[i];
if(pos[a[i]]==0)
pos[a[i]]=i;
}
for(int i=1;i<=n;i++)
{ if(pos[a[i]]!=0&&i!=pos[a[i]])
dp=min(dp,i-pos[a[i]]+1);
pos[a[i]]=i;
}
if(dp==inf)cout<<-1<<endl;
else cout<<dp<<endl;
}
}
D
题意:
你有若干英雄,每个英雄有两个属性,能力和耐力,现在你要派某个英雄去打怪,只能派一个,每个怪兽都有一个耐力值,英雄的能力值大于等于怪兽能力值则能打过,打一个怪消耗一个耐力值,当耐力值耗尽或能力值小于当前怪的时候,英雄回来,一天只能派一个英雄,一个英雄可以被派遣多次,问最少需要多少天打完所有怪。
思路:
1.首先对英雄的攻击里排序,如果攻击力一样就看耐力,再从后往前遍历,求出攻击力大于heros[i].p的所有英雄的最大耐力是多少,存入c[i]中
2.按顺序去遍历怪物,用一个mmax来存下消灭到当前怪物要达到的攻击力是多少,一个len来存要消灭的怪物的数量,其实就是要消灭的怪物中的最大攻击力是多少,然后用二分查找,找出第一个攻击力大于mmax的英雄,下标位idx,那么我们只要判断c[idx]是否比要消灭的怪物的数量len小,如果小,就表示前面一个怪物是能一次性消灭的最多的怪物的最后一个,那么ans++,并且mmax=mos[i],表示重新开始一天,len=1,直到遍历完所有怪物。
3.如果最大怪物的攻击力大于最大英雄的攻击力,那么表示不能通关,输出-1
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include <iostream>
using namespace std;
#define ll long long
int n, m;
const int N = 2e5+5;
struct hero
{
int p;
int s;
bool operator < (const hero& b)const
{
return p < b.p || ((p == b.p)&&s < b.s);
}
} heros[N];
int mos[N];
int c[N];
int main()
{
int t;
cin >> t;
while (t--)
{
cin >> n;
int tmax = 0;
for (int i = 1; i <= n; i++)
{
scanf_s("%d", &mos[i]);
tmax = max(tmax, mos[i]);
}
cin >> m;
for (int i = 1; i <= m; i++)
{
scanf_s("%d%d", &heros[i].p, &heros[i].s);
}
int mmax = 0;
int ans = 0;
sort(heros + 1, heros + m + 1);
for (int i = m; i >= 1; i--)
{
mmax = max(mmax, heros[i].s);
c[i] = mmax;
}
if (heros[m].p < tmax)
{
ans = -1;
}
else
{
mmax = 0;
int len = 0;
for (int i = 1; i <= n; i++)
{
mmax = max(mos[i], mmax);
len++;
int l = 1, r = m;
while (l < r)
{
int mid = (l + r) >> 1;
if (heros[mid].p >= mmax)
{
r = mid;
}
else
{
l = mid + 1;
}
}
if (c[l] < len)
{
ans++;
mmax = mos[i];
len = 1;
}
}
ans++;
}
cout << ans << "\n";
}
return 0;
}
E
题意:
初始有三个组,共n个数,现在要求改变一些数的位置,使得第一个组为这n个数的前缀,第三个组为这n个数的后缀,第二个组为其余数字,移动后一些组可能为空,要求最少移动次数。
思路:
按照顺序,前一个数字所放的组的编号会影响到后续数字放的组的编号,比如如果数字1 放第三组,那么后续n−1 个数组也就只能放第三组,但如果数字1 放第二组,那么数字二就有两个选择:放第二组或放第三组。依次来看,后一个数字的位置状态受到前一个数字位置状态的影响,所以可以通过动态规划来枚举每个数字的位置状态,来求出这n 个数字的最小移动次数。
假设数字i原来所在的组数为a[i] ,也就是输入时的位置。
我们定义: dp[i][j] 为轮到了数字i选组,数字i 选第j组后的最小移动次数,那么我们可以得到状态转移方程:
(1) dp[i][1]=dp[i−1][1]+(a[i]!=1)
(2) dp[i][2]=min(dp[i−1][1],dp[i−1][2])+(a[i]!=2)
(3) dp[i][3]=min(dp[i−1][1],dp[i−1][2],dp[i−1][3])+(a[i]!=3) //可能第二组为空,所以前一个数在第一组
所以n个数的最小移动次数即为dp[n][1],dp[n][2],dp[n][3]中的较小者。
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn=2e5+7;
typedef long long ll;
const int inf=0x3f3f3f3f;
int k1,k2,k3,n,x;
int a[maxn],dp[maxn][5];
int main()
{
scanf("%d%d%d",&k1,&k2,&k3);
n=k1+k2+k3;
for(int i=1;i<=n;i++){
dp[i][1]=dp[i][2]=dp[i][3]=inf;//初始化dp数组为无穷大
scanf("%d",&x);
if(i<=k1)a[x]=1;//数字x原来所在的组数为a[x]
else if(i<=k1+k2)a[x]=2;
else a[x]=3;
}
for(int i=1;i<=n;i++){
for(int j=1;j<=3;j++){//枚举前一个数字所在的组数
for(int k=j;k<=3;k++){//枚举后一个数字所在的组数
dp[i][k]=min(dp[i][k],dp[i-1][j]+(a[i]!=k));
}
}
}
cout<<min(dp[n][1],min(dp[n][2],dp[n][3]))<<'\n';
return 0;
}
F
题意:
给定一些数,让这些数都异或同一个数,是否存在这样一个数x,使得得到的结果的二进制位含有1的个数相等。
位运算知识
题解