一、密钥长度
1、密钥是指谁?
RSA密钥是(公钥+模值)、(私钥+模值)分组分发的,单独给对方一个公钥或私钥是没有任何用处,所以我们说的“密钥”其实是它们两者中的其中一组。但我们说的“密钥长度”一般只是指模值的位长度。目前主流可选值:1024、2048、3072、4096...低于1024bit的密钥已经不建议使用(安全问题)。没有上限,多大都可以使用。
2、公钥指数如何确定?
公钥指数是随意选的,但目前行业上公钥指数普遍选的都是65537(0x10001,5bits),该值是除了1、3、5、17、257之外的最小素数,为什么不选的大一点?当然可以,只是考虑到既要满足相对安全、又想运算的快一点(加密时),PKCS#1的一个建议值而已。
有意的把公钥指数选的小一点,但是对应私钥指数肯定很大,意图也很明确,大家都要用公钥加密,所以大家时间很宝贵,需要快一点,您一个人私钥解密,时间长一点就多担待,少数服从多数的典型应用。
3、私钥指数如何确定?
公钥指数随意选,那么私钥就不能再随意选了,只能根据算法公式(ed%k=1,k=(p-1)(q-1))进行运算出来。那么私钥指数会是多少位?根据ed关系,私钥d=(x*k+1)/e,所以单看这个公式,私钥指数似乎也不是唯一结果,可能大于也可能小于1024bits的,但我们习惯上也是指某个小于1024bits的大整数。
包括前文的公钥指数,在实际运算和存储时为方便一般都是按照标准位长进行使用,前面不足部分补0填充,所以,使用保存和转换这些密钥需要注意统一缓冲区的长度。
二、明文长度
网上有说明文长度小于等于密钥长度(Bytes)-11,这说法本身不太准确,会给人感觉RSA 1024只能加密117字节长度明文。实际上,RSA算法本身要求加密内容也就是明文长度m必须0<m<n,也就是说内容这个大整数不能超过n,否则就出错。那么如果m=0是什么结果?普遍RSA加密器会直接返回全0结果。如果m>n,运算就会出错?!那怎么办?且听下文分解。
所以,RSA 1024实际可加密的明文长度最大也是1024bits,但问题就来了:
如果小于这个长度怎么办?就需要进行padding,因为如果没有padding,用户无法确分解密后内容的真实长度,字符串之类的内容问题还不大,以0作为结束符,但对二进制数据就很难理解,因为不确定后面的0是内容还是内容结束符。
只要用到padding,那么就要占用实际的明文长度,于是才有117字节的说法。我们一般使用的padding标准有NoPPadding、OAEPPadding、PKCS1Padding等,其中PKCS#1建议的padding就占用了11个字节。
如果大于这个长度怎么办?很多算法的padding往往是在后边的,但PKCS的padding则是在前面的,此为有意设计,有意的把第一个字节置0以确保m的值小于n。
这样,128字节(1024bits)-减去11字节正好是117字节,但对于RSA加密来讲,padding也是参与加密的,所以,依然按照1024bits去理解,但实际的明文只有117字节了。
关于PKCS#1 padding规范可参考:RFC2313 chapter 8.1,我们在把明文送给RSA加密器前,要确认这个值是不是大于n,也就是如果接近n位长,那么需要先padding再分段加密。除非我们是“定长定量自己可控可理解”的加密不需要padding。
各种 padding 对输入数据长度的要求:
私钥加密:
RSA_PKCS1_PADDING RSA_size-11
RSA_NO_PADDING RSA_size-0
RSA_X931_PADDING RSA_size-2
公钥加密
RSA_PKCS1_PADDING RSA_size-11
RSA_SSLV23_PADDING RSA_size-11
RSA_X931_PADDING RSA_size-2
RSA_NO_PADDING RSA_size-0
RSA_PKCS1_OAEP_PADDING RSA_size-2 * SHA_DIGEST_LENGTH-2
三、密文长度
密文长度就是给定符合条件的明文加密出来的结果位长,这个可以确定,加密后的密文位长跟密钥的位长度是相同的,因为加密公式:
C=(P^e)%n
所以,C最大值就是n-1,所以不可能超过n的位数。尽管可能小于n的位数,但从传输和存储角度,仍然是按照标准位长来进行的,所以,即使我们加密一字节的明文,运算出来的结果也要按照标准位长来使用(当然了,除非我们能再采取措施区分真实的位长,一般不在考虑)。
至于明文分片多次加密,自然密文长度成倍增长,但已不属于一次加密的问题,不能放到一起考虑。