RSA的1024位是指公钥及私钥分别是1024bit,也就是1024/8=128 Bytes

本文探讨了RSA算法中密钥长度的选择,分析了不同密钥长度的安全性与性能平衡,详细解释了1024bit密钥的强度及其在当前软硬件水平下的安全性,并讨论了密钥长度对加密解密时间和密文长度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 


RSA算法密钥长度的选择是安全性和程序性能平衡的结果,密钥长度越长,安全性越好,加密解密所需时间越长。

 

1. 非对称加密算法中1024 bit密钥的强度相当于对称加密算法80bit密钥的强度。有资料上说以当前的软硬件水平,破解1024bit的RSA加密密文,需要一套10亿美金的系 统使用若干十年的时间,所以2015年前,1024bit的还无需太担心暴力破解的危险。

 

2. 密钥长度增长一倍,公钥操作所需时间增加约4倍,私钥操作所需时间增加约8倍,公私钥生成时间约增长16倍。

 

3. 一次能加密的密文长度与密钥长度成正比, len_in_byte(raw_data) = len_in_bit(key)/8 -11,如1024bit的密钥,一次能加密的内容长度为 1024/8 -11 = 117 byte。所以非对称加密一般都用于加密对称加密算法的密钥,而不是直接加密内容。

 

4. 加密后密文的长度为密钥的长度,如密钥长度为1024b(128Byte),最后生成的密文固定为 1024b(128Byte

RSA的1024位是指公钥及私钥分别是1024bit,也就是1024/8=128 Bytes

转自:http://blog.sina.com.cn/s/blog_4fcd1ea301012o4q.html

编写Python程序实现310(大约102比特)RSA公钥密码系统并使用NTL库,首先你需要安装`python-ntl`库,它是一个用于数论算法的高级库。以下是简化的步骤以及关键代码片段: 1. **安装NTL库**: 在命令行或终端中运行: ``` pip install ntl ``` 2. **导入所需模块**: ```python from ntl import Zmod, modinv, BitArray, isqrt ``` 这里`Zmod`用于模运算,`modinv`计算逆元,`BitArray`处理二进制数据,`isqrt`计算平方根。 3. **生成大素数** (因为RSA基于两个大素数的乘积): ```python def generate_large_prime(): while True: p = BitArray(310).random.randint(2**300, 2**310 - 1) # 随机生成310的大于2^300小于2^310的整数 if Zmod(p).isprime(): # 检查是否为素数 return int(p) p = generate_large_prime() q = generate_large_prime() n = p * q ``` 4. **求欧拉函数φ(n)及欧拉定理**: ```python phi_n = (p - 1) * (q - 1) e = 65537 # 这是常见的安全选择,小于φ(n)且与φ(n)互质 # 计算e关于φ(n)的模逆(e_inv) e_inv = modinv(e, phi_n) ``` 5. **生成公钥私钥**: ```python public_key = (e, n) private_key = (d := e_inv, n) ``` 6. **加密和解密示例**: ```python def encrypt(message, public_key): ciphertext = pow(int.from_bytes(message, 'big'), public_key[0], public_key[1]) return ciphertext.to_bytes((ciphertext.bit_length() + 7) // 8, 'big') def decrypt(ciphertext, private_key): plaintext = pow(int.from_bytes(ciphertext, 'big'), private_key[0], private_key[1]) return plaintext.to_bytes((plaintext.bit_length() + 7) // 8, 'big') ``` 请注意,这只是一个基本的框架,实际应用中可能需要对安全性、效率和错误处理做更多考虑。此外,310的密钥长度相当大,可能会导致性能问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值