Fractions to Decimals

10 篇文章 0 订阅

 

       这道题题意比较简单,给你一个被除数和除数,求出小数的表示形式,若循环,则把循环节用括号括起来。

       用试除法来做,难点在于如何判循环节。若果判商的话,会比较麻烦,但如果判余数则会很简单。因为只要余数相同,则一定会出现循

环节。刚开始没想到判余数,就一直没做,后来查了些资料,恍然大悟。在查资料时发现关于循环节许多有意思的结论:

       1、循环节的位数一定小于除数,最多也要比除数小1

       这一点很容易理解。因为余数总是比除数小,如果除数是ɑ,余数只能是123,ɑ-1,所以最多在除了ɑ-1位以后,继续除下去,余数肯定会重复出现,这样就形成了循环。

       2、循环节的位数如果是偶数,把循环节分成位数相等的两段,两段对应数字的和一定是9(不能证明)。

       比如,循环节“142857”可以分成“142”“857”两段,189459279。循环节“90”可以分成“9”“0”两段,909。循环节“0434782608695652173913” 可以分成“04347826086”“95652173913”两段,099459369459729819279639099819639

       3、一个最简真分数q/p,如果分母p能够整除一连串最少n9,用所得的商乘分子q,得数(应该有n位,不足n位时在前面补0)就是这个最简真分数化成纯循环小数时的循环节。

证明:假设有一个纯循环小数x0.ɑ1ɑ2ɑ3ɑ1ɑ2ɑ3…。由此可以推出1000x=ɑ1ɑ2ɑ3.ɑ1ɑ2ɑ3ɑ1ɑ2ɑ3…,1000xx=ɑ1ɑ2ɑ3999x=ɑ1ɑ2ɑ3x=ɑ1ɑ2ɑ3/999。说明这个纯循环小数可以化成分数,分子就是它的循环节,分母是与循环节位数相同的一连串39。把这个分数化成最简分数,ɑ1ɑ2ɑ3/999q/p,于是ɑ1ɑ2ɑ3999q/p,ɑ1ɑ2ɑ3在形式上是整数,而q不能被p整除,所以999就一定能被p整除,因此ɑ1ɑ2ɑ3999÷p×q。并且因为ɑ1ɑ2ɑ33位,得数也应该有3位,不足3位时就要在前面补0。这样就找到了确定循环节的方法。

 

 以上结论摘自 伏枥老骥的博客

程序代码:

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值