深度学习
这是一个快乐的人
欢迎关注个人公众号“人工智能拾贝”,原创超有趣的机器学习文章!
展开
-
深度学习实战 1-补充:搭建Ubuntu16.04+Anaconda(内嵌Python3.5) + theano
由于工作需要,需要使用Theano的深度学习框架进行学习,这时,如果单纯地直接使用类似Tensorflow的安装方法来配置Theano,往往会产生包的依赖性问题,这里给出配置方法,需要说明的是,配置的时候要使用CUDA toolkit环境,这里要求使用nvidia的计算显卡支持。原创 2017-12-28 19:20:04 · 411 阅读 · 0 评论 -
UFLDL Tutorial 课程核心内容提炼-2:反向传导算法
该课程在斯坦福深度学习课上,点此打开--------------------------------------------------分割线------------------------------------------------------一、概述 固定样本集 ,它包含 个样例,可以用批量梯度下降法来求解神经网络(W和b),对于单个样例,其代价函数为: ...原创 2018-02-26 10:58:07 · 288 阅读 · 0 评论 -
UFLDL Tutorial 课程核心内容提炼-1:神经网络
该课程在斯坦福深度学习课上,点此打开--------------------------------------------------分割线------------------------------------------------------一、概述 训练样本集: 神经网络算法能够提供一种复杂且非线性的假设模型 ...原创 2018-02-26 10:32:45 · 450 阅读 · 0 评论 -
UFLDL Tutorial 课程核心内容提炼-3:自编码算法和稀疏性
该课程在斯坦福深度学习课上,点此打开 核心内容,自编码器,非监督学习方法。如果隐藏层的神经元数目较少,很好理解,如果较多,则要对隐层进行稀疏性限制,引入惩罚因子,这个惩罚因子和信息熵理论中的散度有关,所以引入KL-divergence进行转换,转换完成之后,为了求解这个最后的解,即的h,给出最终的损失函数,之后就和普通的神经网络一致了,进行梯度求解,迭代解出h。-----------...原创 2018-02-26 17:59:08 · 320 阅读 · 0 评论