图解 Pytorch 中 nn.Conv2d 的 groups 参数

本文回顾了普通卷积操作的基本概念,重点介绍了如何通过groups机制调整卷积核的处理方式,以降低计算量和参数量。通过实例演示和实验验证,展示了groups在实际应用中的效果。最后,提供了详细的参数计算公式和参考资料链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


免费链接: Blogger(需翻Q)


普通卷积复习

首先我们先来简单复习一下普通的卷积行为。

在这里插入图片描述
从上图可以看到,输入特征图为3,经过4个filter卷积后生成了4个输出特征图。对于普通的卷积操作,我们可以得到几个重要的结论:

  1. 输入通道数 = 每个filter的卷积核的个数。(注意区分卷积核和Filter,它们俩的关系是:多个卷积核组成一个Filter
  2. Filter的个数 = 输出通道数

此时,我们的参数量为:

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值