【论文解读】(CSC任务的音标和字形信息到底用了多少?)Investigating Glyph-Phonetic Information for Chinese Spell Checking

相关信息

年份:2022年12月

论文地址:https://arxiv.org/abs/2212.04068

论文代码:https://github.com/piglaker/ConfusionCluster

论文阅读前提:需要了解中文拼写检查任务(CSC)

Abstract(摘要)

许多中文拼写检查(Chiniese Spell Checking, CSC)模型都使用了“字形信息+拼音信息”(glyph-phonetic)来进行预测,但是**“这些glyph-phonetic信息到底被用了多少”是不清楚的**,所以作者提出了两个新的方法来验证,同时也可以提升模型的泛化能力。

1. 介绍(Introduction)

作者这篇论文主要回答了两个问题:

  • Q1:现有的中文预训练模型(Chinese pre-trained models)编码了glyph-phonetic信息了吗?
  • Q2:现有的CSC模型在做预测时,是否完全利用了错字的glyph-phonetic信息呢?

作者针对这两个问题,提出了三个贡献(两个Probe task和一个setting),如下:

  • 作者提出了一个简单的probe task来度量中文预训练模型包含的glyph-phonetic信息
  • 作者提出了一个“错字修正覆盖率(Correction with Misspelled character Coverage Ratio, CCCR)”指标来衡量一个CSC模型在做预测时,到底用了多少错字信息。该指标也可以解释为什么现在的CSC方法在数据集上表现很好,但在实践中却很差。
  • 作者为CSC任务提出了一个新的setting,名为“isolation correction”,其能更好的检验CSC模型的泛化能力和修正能力。

2. 相关工作(Related Work)

3. 实验一:探究Glyph-Phonetic信息(Experiment-I: Probing for Character Glyph-Phonetic Information)

在第一章介绍章节,作者说回答了两个问题,第一个问题是:“现有的中文预训练模型(Chinese pre-trained models)编码了glyph-phonetic信息了吗?”

作者提出的一个贡献是:作者提出了一个简单的probe task来度量中文预训练模型包含的glyph-phonetic信息

本章就是作者针对该问题所提出的probe task进行详细说明。


作者提出的方法:

作者分别对字形(Glyph)信息和拼音(Phonetic Probe)信息进行探究,其思路几乎一致。

以拼音信息为例,作者首先构造一个数据集,其一个sample由两个字组成。对于其Label,拼音一样,则label为1,否则label为0。例如,(程, 称)=1, (产, 称)=0。

然后作者使用预训练模型对字进行编码,然后将编码后的两个字向量concat到一起,然后经过一个简单的多层感知机(Multilayer Perceptron,MLP)进行二分类的预测。

假设MLP经过训练后可以成功预测这俩字是否拼音一样,说明预训练模型对字编码时包含其拼音信息,否则就不包含。(训练MLP时,最前面的预训练模型参数是要固定不变的)


3.1 Glyph Probe

本节详细介绍了作者对于字形信息的探究方法。


数据集的构造:

数据集样本示例如下:
在这里插入图片描述

如图所示,一个样本由两个字组成,其Label是1或0。1表示这俩字相似,0表示不相似。具体定义为: 如果两个字是包含被包含的关系时,其Label是1,否则Label是0

作者具体构造数据集的方法如下:

  1. 预处理阶段,作者选择BERT中出现的汉字,并去除掉一些生僻字,例如“圜”等。 全量汉字记为 W = { w 1 , w 2 , … , w d } \mathcal{W}=\left\{w_1, w_2, \ldots, w_d\right\} W={w1,w2,,wd} d d d 是汉字的数量。
  2. 对于一个字 w w w,作者使用hanzi_chanzi工具将其拆开,例如“称”字会被拆成“禾”和“尔”。 记为: U = { u 1 , u 2 , … , u c } \mathcal{U}=\left\{u_1, u_2, \ldots, u_c\right\} U={u1,u2,,uc},其中 c c c 是所有的偏旁部首数量。
  3. 如果 u i u_i ui w i w_i wi 的一部分,那么 u i , w i u_i, w_i ui,wi 就是一对儿正样本,反之则是负样本。
  4. 按3的方法,就能构造出正样本集合 D p o s = { { u 1 , w 1 } , { u 2 , w 1 } , … , { u i , w d } } \mathcal{D}_{pos}=\left\{\left\{u_1, w_1\right\},\left\{u_2, w_1\right\}, \ldots,\left\{u_i, w_d\right\}\right\} Dpos={{u1,w1},{u2,w1},,{ui,wd}}
  5. 同样,也可以构造出负样本集合 D n e g = { { u 1 n , w 1 } , { u 2 n , w 1 } , … , { u i n , w d } } \mathcal{D}_{neg}=\left\{\left\{u_1^n, w_1\right\},\left\{u_2^n, w_1\right\}, \ldots,\left\{u_i^n, w_d\right\}\right\} Dneg={{u1n,w1},{u2n,w1},,{uin,wd}}, 其中 d d d 和正样本中的 d d d 一致, u n u^n un 是从偏旁部首集合中随机选择的。
  6. 最终按8:2进行训练集和测试集的拆分

构造数据集后,就是具体方法:

  1. 首先,作者将样本 i i i(两个字)通过预训练模型得到两个embedding,然后将两个embedding连接(concat)到一起,得到模型的输入 x i x_i xi

该embedding是不包含上下文信息的。

  1. 使用多层感知机进行前向传播,最后经过Sigmoid得到最终预测结果 y i ^ \hat{y_i} yi^ ,用公式表示为: y ^ i = Sigmoid ⁡ ( MLP ⁡ ( x i ) ) \hat{y}_i=\operatorname{Sigmoid}\left(\operatorname{MLP}\left(x_i\right)\right) y^i=Sigmoid(MLP(xi))

3.2 Phonetic Probe

拼音信息的探究方法与字形几乎一致,只是数据集些许不一样而已。


拼音信息的数据集构造方法:

在这里插入图片描述

同样,一个样本包含两个字,其Label为1或0。当两个字拼音相同时(忽略声调),label为1,否则label为0。

数据集构造方法(与字形数据集构造也类似):

  1. 对于字典 W W W 中的字 w i w_i wi ,我们从字典中找到另一个与其拼音相同的 u i u_i ui,然后将 ( u i , w i ) (u_i, w_i) (ui,wi) 作为正样本
  2. 类似1,我们从字典中找一个与 w i w_i wi 拼音不相同的,将 ( s i , w i ) (s_i, w_i) (si,wi) 作为负样本

3.3 结果与分析(Results and Analysis)

作者使用多个预训练模型进行了实验,结果如下图:

在这里插入图片描述

Control是完全随机初始化的embedding模型。

从结果可以得出以下结论:

  1. 随机模型(control)没有任何编码Glyph信息和Phonetic信息的能力(预测准确率接近50%)。
  2. 几乎所有BERT模型的都具有一定的编码Glyph信息的能力,但不多,差不多准确率都在75%,比word2vec强一点。
  3. 除ChineseBERT外,这些模型几乎没有编码Phonetic信息的能力(预测准确率都在55%左右)。
  4. ChineseBERT编码Phonetic信息的能力比他们稍微强一点,作者认为可能是因为在最开始ChineseBERT设计时就将Phonetic信息考虑在内。(ChineseBERT可以参考这篇博文

4. 实验2:探究错字修正(Experiment-II: Probing for Homonym Correction)

本章是回答作者提出的问题二:现有的CSC模型在做预测时,是否完全利用了错字的glyph-phonetic信息呢?

对应作者的贡献2:作者提出了一个“错字修正覆盖率(Correction with Misspelled character Coverage Ratio, CCCR)”指标来衡量一个CSC模型在做预测时,到底用了多少错字信息。

本章作者提出了“错字修正覆盖率(CCCR)”的概念,CCCR越高,说明CSC模型在做预测时,更多的参考了“错字”。按原文的说法就是:CCCR可以知道模型在做出预测时是否调整了预测概率分布

“调整预测概率分布”在后续会给出解释。这里简单举例说明:假设句子为 “我要去贝你奶奶”。如果模型没有参考错字“贝”时,预测的概率分布可能是“接(0.65), 找(0.25), 见(0.1)”。但如果模型参考了错字“贝”,则预测的概率分布可能就变为“见(0.95), 接(0.06), 找(0.04)”

4.1 CCCR: Correction with Misspelled Character Coverage Ratio

CCCR描述的是能根据错字修正句子所占的比例。即:


CCCR用我自己的语言描述为:

C C C R = 模型能够根据错字提醒改正的句子数 需根据错字提醒才能改正的句子数 CCCR= \frac{模型能够根据错字提醒改正的句子数}{需根据错字提醒才能改正的句子数} CCCR=需根据错字提醒才能改正的句子数模型能够根据错字提醒改正的句子数

需根据错字提醒才能改正的句子(论文中为“MLM集合”):有些句子必须根据错字提醒才能正确改正,例如:“我要去[MASK]我奶奶”,这里的[MASK]填“接、见、找、等”都行。这种属于该集合中的句子。 同理,有些句子就算不提醒也知道填啥,例如“[MASK]你太美”,这没有歧义,[MASK]肯定填“鸡”,这种句子就不在该集合中。

模型能够根据错字提醒改正的句子:对于错字位置有歧义的句子,如果模型能够根据错字改正该句子,那么该句子就属于该集合。 例如:“我要去贝我奶奶”,模型成功的将“贝”改为了“见”,那么该集合数量+1。

上面若没看懂,可以看如下例子,例如:我们有5个需修改的句子

  • 我要去我奶奶。 (有歧义,不看“贝”不知道该填
  • 你太美。 (无歧义,不看也知道填
  • 你是不是有。(有歧义,不看不知道填
  • 此生无悔入华。(无歧义,不看也知道填
  • 我喜欢吃。(有歧义,不看,不知道填

上述有3个句子是有歧义句子,所以 需根据错字提醒才能改正的句子 = 3 \text{需根据错字提醒才能改正的句子}=3 需根据错字提醒才能改正的句子=3

此时,我们将这5个句子送给CSC模型进行预测(不关心那2个无歧义的句子),假设最终对有歧义的3个句子成功预测对了2个,那么 模型能够根据错字提醒改正的句子数 = 2 \text{模型能够根据错字提醒改正的句子数}=2 模型能够根据错字提醒改正的句子数=2

最终: C C C R = 2 3 CCCR=\frac{2}{3} CCCR=32


在论文原文中,“需根据错字提醒才能改正的句子”集合为记为 M L M MLM MLM
“模型能够根据错字提醒改正的句子”集合记为 H o m o n y m Homonym Homonym

对于 M L M MLM MLM集合的构造,作者使用的方法是:使用MLM任务来预测错字,若能成功出正确的字,则该句子“不属于”MLM集合,否则就属于。 例如,①对于句子 “我要去贝我奶奶”,使用MLM任务,就将原句子变为“我要去[MASK]我奶奶”,此时模型无法预测出“见”字,所以该句子属于MLM集合元素。 ②对于句子“此生无悔入华虾”,使用MLM任务,将原句子变为“此生无悔入华[MASK]”,此时模型成功预测出“夏”字,所以该句子不属于MLM集合元素。

Homonym集合构造方法若一个句子属于MLM集合,且模型成功预测出正确字,那么该句子就属于 H o m o n y m Homonym Homonym集合元素。 (TODO,这里好像有问题)

上述任务用论文中的图表示为:

在这里插入图片描述


论文中对CCCR过程给出了详细的数学公式描述(如果看懂上面,且不感兴趣可以跳过):

假定 C \mathcal{C} C 是语言 L L L 中所有有限长度句子 C i C_i Ci 的集合。 C = { C 0 , … , C i , … } , C i = { c i , 1 , … , c i , n , … } \mathcal{C}=\left\{C_0, \ldots, C_i, \ldots\right\}, C_i=\left\{c_{i, 1}, \ldots, c_{i, n}, \ldots\right\} C={C0,,Ci,},Ci={ci,1,,ci,n,},其中 c i , j ∈ L c_{i,j} \in L ci,jL

L L L 指代的就是所有汉字。 C i C_i Ci 就是一个句子, c i , j c_{i,j} ci,j 就是句子 C i C_i Ci 中的一个字。 C \mathcal{C} C 就是全体中文句子。

定义 C i n , a = { c i , 1 , … , c i , n − 1 , a , c i , n + 1 , … } C_i^{n,a}=\left\{c_{i, 1}, \ldots, c_{i, n-1}, a, c_{i, n+1}, \ldots\right\} Cin,a={ci,1,,ci,n1,a,ci,n+1,},即句子 C i C_i Ci的位置 n n n 是错字 a a a

定义 X i X_i Xi 为一个输入样本,则对于样本 X i X_i Xi,其 i i i 位置的输出为:

P ( y i = j ∣ X i , w ) = softmax ⁡ ( W H w ( X i ) + b ) [ j ] P\left(y_i=j \mid X_i, w\right)=\operatorname{softmax}\left(W H^w\left(X_i\right)+b\right)[j] P(yi=jXi,w)=softmax(WHw(Xi)+b)[j]

例如 X i X_i Xi 为 “我要去贝我奶奶”,那么 P ( y 3 = j ∣ X i , w ) P(y_3=j|X_i,w) P(y3=jXi,w) 就表示第3个字(贝字所在的位置)预测为“见”字的概率(见字在字典中的index为 j j j

CCCR是由 M L M \mathcal{MLM} MLM H o m o n y m Homonym Homonym 两个集合组成,前者表示“需要错字信息才能被正确修复的样本”,后者表示“模型可以根据错字信息调整概率分布的样本(也就是可以正确修改的样本)”

定义 D \mathcal{D} D C \mathcal{C} C 的一个子集,意思就是 D \mathcal{D} D 是我们的数据集。

M L M \mathcal{MLM} MLM D \mathcal{D} D 的子集,对于输入句子 C i ∈ D C_i \in \mathcal{D} CiD C i = { c 1 , c 2 , [ M A S K ] , … , c T } C_i = \left\{c_1, c_2,[M A S K], \ldots, c_T\right\} Ci={c1,c2,[MASK],,cT}[mask]所在位置就是错字的位置。如果满足下面不等式,则 C i ∈ M L M C_i \in MLM CiMLM

P ( y i =  noise  ∣ C i n , m a s k , w ) > P ( y i = Y i ∣ C i n ,  mask  , w ) P\left(y_i=\text { noise } \mid C_i^{n, m a s k}, w\right)>P\left(y_i=Y_i \mid C_i^{n, \text { mask }}, w\right) P(yi= noise Cin,mask,w)>P(yi=YiCin, mask ,w)

该不等式中的符号为: y i = noise y_i=\text{noise} yi=noise 表示预测结果是错误的(除了正确字,随便啥都行), y i = Y i y_i=Y_i yi=Yi 表示预测结果是正确的。所以该不等式就表示,预测错字的概率比预测正确字的概率高。

例如:“我要去[MASK]我奶奶”中,对于[MASK]的预测概率分布为“接(0.65), 见(0.32), …”,即 P ( y 3 = 接 ) > P ( y 3 = 见 ) P(y_3=接)>P(y_3=见) P(y3=)>P(y3=),那么该样本就属于MLM集合

H o m o n y m Homonym Homonym 与MLM类似,对于输入 C i = { c 1 , c 2 , c misspelled  , … , c T } C_i=\left\{c_1, c_2, c_{\text {misspelled }}, \ldots, c_T\right\} Ci={c1,c2,cmisspelled ,,cT} (这次并没有讲错字改成[mask],而是采用原本的错字)。如果满足下面不等式,则 C i ∈ H o m o n y m C_i \in Homonym CiHomonym

P ( y i = Y i ∣ C i n , c misspelled  , w ) ) > P ( y i =  noise  ∣ C i n , c misspelled  , w ) \left.P\left(y_i=Y_i \mid C_i^{n, c_{\text {misspelled }}}, w\right)\right)>P\left(y_i=\text { noise } \mid C_i^{n, c_{\text {misspelled }}}, w\right) P(yi=YiCin,cmisspelled ,w))>P(yi= noise Cin,cmisspelled ,w)

该不等式的意思与MLM不等试刚好相反,即正确字的概率比错字的概率大。

有了上述两个集合,那么CCCR的公式为:

C C C R = ∣ { C i ∣ C i ∈ M L M ∧ C i ∈  Homonym  } ∣ ∣ { C i ∣ C i ∈ M L M } ∣ C C C R=\frac{\mid\left\{C_i \mid C_i \in M L M \wedge C_i \in \text { Homonym }\right\} \mid}{\left|\left\{C_i \mid C_i \in M L M\right\}\right|} CCCR={CiCiMLM}{CiCiMLMCi Homonym }

|{}|表示求集合的元素个数, ∧ \wedge 表示逻辑与


CCCR的baseline

作者还为CCCR设置了一个baseline,公式如下:

 guess  i = P ( y i =  noise  ∣ C i n ,  mask  , w ) 1 − P ( y i =  noise  ∣ C i n ,  mask  , w )  CCCR  baseline  = ∑ i ∈ S { 1 ∗  guess  i } ∣ { C i ∣ C i ∈ M L M } ∣ \begin{gathered} \text { guess }_i=\frac{P\left(y_i=\text { noise } \mid C_i^{n, \text { mask }}, w\right)}{1-P\left(y_i=\text { noise } \mid C_i^{n, \text { mask }}, w\right)} \\\\ \text { CCCR }_{\text {baseline }}=\frac{\sum_{i \in S}\left\{1 * \text { guess }_i\right\}}{\left|\left\{C_i \mid C_i \in M L M\right\}\right|} \end{gathered}  guess i=1P(yi= noise Cin, mask ,w)P(yi= noise Cin, mask ,w) CCCR baseline ={CiCiMLM}iS{1 guess i}

TODO,这个Baseline公式没看懂

4.2 Correction Setting Results

TODO,这里作者应该暂时还漏了一个表。这个表应该大概是这样:经过SIGHAN训练集训练前,BERT模型表现一般,但训练后,SIGHAN模型表现较好。

作者认为,之所以训练后表现很好,并不是模型真的变好了,而是因为SIGHAN的训练集和测试集有很多重叠的部分。 所以模型并不是学会了如何改错,而是记住了训练集的内容

4.3 Isolation Correction Setting Experiment

为了更好的衡量 4.2 中的问题,作者提出了一个新的setting,即“Isolation Correction”,其思路很简单:将SIGHAN训练集和测试集中重叠的部分删除掉,然后删除后的训练集训练模型和测试模型

作者对SIGHAN重叠数据的处理情况如下表:

在这里插入图片描述

4.4 Results and Analysis

作者对几个BERT模型和两个CSC模型使用Isolation SIGHAN数据集进行训练和测试,结果如下表:

在这里插入图片描述

可以看到,F1一下子跌到没法看了。说明这些模型的泛化能力还是比较差的。

5. 结论(Conclusion)

作者根据实验分析,得出了以下结论:

  1. 目前的中文预训练语言模型(Chinese PLM)可以编码一部分Glyph信息,但几乎无法编码Phonetic信息
  2. 现有的CSC模型在做预测时,无法完全利用Glyph-phonetic信息
  3. SIGHAN的训练集和测试集有大量重叠的部分,不利于校验CSC模型的泛化能力。,作者提出了另一个setting来校验模型泛化能力

6. 局限性(Limitation)

作者实验的局限性主要有两点:

  1. 之前的CSC模型大多都很难复现,所以作者只弄了两个。
  2. SIGHAN测试集小,数据质量差,涉及领域窄,其与真实场景差距大。

本文缩写表

  • CSC: Chinese Spell Checking, 中文拼写检查
  • PLM: Pre-trained Language Model,预训练语言模型,例如BERT
  • MLP:Multilayer Perceptron,多层感知机。就是多层全连接神经网络。
  • MLM:Masked-Language Modeling,预训练BERT时使用的任务,即将一个句子的一个字使用[mask]给盖住,然后让BERT预测这个[mask]是什么字。
  • 23
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

iioSnail

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值