AI学习指南机器学习篇-决策树的模型评估

AI学习指南机器学习篇-决策树的模型评估

在机器学习中,决策树是一种常见的分类算法,它通过构建树状模型来对数据进行分类。在实际应用中,我们需要对决策树模型进行评估,以了解其在分类任务中的性能表现。本文将讨论决策树模型的评估指标,包括准确率、召回率、F1分数等,并解释这些评估指标在评价分类模型性能时的作用和局限性。

准确率(Accuracy)

准确率是最常用的评估指标之一,它表示模型预测正确的样本数占总样本数的比例。准确率的计算公式如下:

A c c u r a c y =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值