AI学习指南机器学习篇-决策树的模型评估 在机器学习中,决策树是一种常见的分类算法,它通过构建树状模型来对数据进行分类。在实际应用中,我们需要对决策树模型进行评估,以了解其在分类任务中的性能表现。本文将讨论决策树模型的评估指标,包括准确率、召回率、F1分数等,并解释这些评估指标在评价分类模型性能时的作用和局限性。 准确率(Accuracy) 准确率是最常用的评估指标之一,它表示模型预测正确的样本数占总样本数的比例。准确率的计算公式如下: A c c u r a c y =