AI学习指南机器学习篇-梯度提升树损失函数与梯度下降
在机器学习领域中,梯度提升树(Gradient Boosting Tree)是一种十分流行的集成学习方法。梯度提升树是通过不断迭代构建决策树,将多棵树结合起来形成一个强学习器。在梯度提升树中,损失函数及梯度下降算法是两个核心概念。本篇博客将探讨梯度提升树中使用的损失函数,以及梯度下降算法在梯度提升树中的应用,以及如何最小化损失函数。
什么是梯度提升树?
在深入讨论梯度提升树中的损失函数和梯度下降之前,我们首先来了解一下什么是梯度提升树。梯度提升树是一种集成学习方法,通过将多棵决策树组合起来,可以用于回归和分类等问题。在梯度提升树中,每一棵树都是在前一棵树的残差基础上进行训练的,最终将多棵树的预测结果累加起来得到最终预测结果。
损失函数在梯度提升树中的作用
在梯度提升树中,我们需要定义一个损失函数(Loss Function)来衡量模型的预测结果与真实值之间的差距。常见的损失函数包括平方损失(Square Loss)和绝对损失(Absolute Loss)等。下面我们将分别介绍这两种常见的损失函数,并讨论它们在梯度提升树中的应用。
平方损失
平方损失是一种常见的损失函数,它可以表示为:
L(y,f)=(y−f)2L(y, f) = (y - f)^2