AI学习指南机器学习篇-梯度提升树损失函数与梯度下降

AI学习指南机器学习篇-梯度提升树损失函数与梯度下降

在机器学习领域中,梯度提升树(Gradient Boosting Tree)是一种十分流行的集成学习方法。梯度提升树是通过不断迭代构建决策树,将多棵树结合起来形成一个强学习器。在梯度提升树中,损失函数及梯度下降算法是两个核心概念。本篇博客将探讨梯度提升树中使用的损失函数,以及梯度下降算法在梯度提升树中的应用,以及如何最小化损失函数。

什么是梯度提升树?

在深入讨论梯度提升树中的损失函数和梯度下降之前,我们首先来了解一下什么是梯度提升树。梯度提升树是一种集成学习方法,通过将多棵决策树组合起来,可以用于回归和分类等问题。在梯度提升树中,每一棵树都是在前一棵树的残差基础上进行训练的,最终将多棵树的预测结果累加起来得到最终预测结果。

损失函数在梯度提升树中的作用

在梯度提升树中,我们需要定义一个损失函数(Loss Function)来衡量模型的预测结果与真实值之间的差距。常见的损失函数包括平方损失(Square Loss)和绝对损失(Absolute Loss)等。下面我们将分别介绍这两种常见的损失函数,并讨论它们在梯度提升树中的应用。

平方损失

平方损失是一种常见的损失函数,它可以表示为:
L(y,f)=(y−f)2L(y, f) = (y - f)^2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值