AI学习指南深度学习篇-卷积神经网络(CNN)简介
深度学习已经成为人工智能领域的热门话题,而卷积神经网络(Convolutional Neural Network,CNN)作为深度学习的一种重要模型,在计算机视觉、自然语言处理等领域取得了巨大的成功。本文将介绍CNN的历史、应用领域以及相对于传统神经网络的优势和适用场景。
1. CNN的历史
卷积神经网络最早由神经科学家Hubel和Wiesel提出,他们在研究猫的视觉系统时发现,大脑皮层中的神经元对于特定方向和特定位置的刺激响应较强。这一发现启发了计算机科学家对神经网络结构的设计,于是卷积神经网络应运而生。
在接下来的几十年中,CNN经历了多次改进和迭代,直到2012年,由于AlexNet在ImageNet图像识别竞赛中取得了巨大成功,CNN开始受到广泛关注。自此之后,CNN在图像识别、目标检测、语义分割等领域取得了令人瞩目的成绩,成为深度学习领域的重要技术之一。
2. CNN的应用领域
2.1 图像识别
作为最早兴起的应用领域之一,CNN在图像识别方面取得了显著的成就。以ImageNet图像识别竞赛为例,从2012年的AlexNet开始,CNN模型在这一竞赛中的表现一路领