AI学习指南深度学习篇-生成对抗网络的变体及扩展
引言
生成对抗网络(GAN)自2014年由Ian Goodfellow等人首次提出以来,迅速成为深度学习领域的一项重要技术。GAN的核心思想是通过两个神经网络的对抗训练来生成新的样本数据,这一过程可以在图像生成、图像编辑、超分辨率重建等诸多领域发挥巨大的作用。本文将重点介绍GAN的变体及其扩展,特别是条件生成对抗网络(cGAN)和Wasserstein GAN(WGAN)。我们将深入探讨这些变体的特点以及在各自应用领域的表现。
1. 生成对抗网络基础
1.1 GAN的基本结构
GAN由两个神经网络组成:
- 生成器(Generator, G):负责生成假样本,试图让假样本看起来真实。
- 判别器(Discriminator, D):负责判断样本是真实的还是生成的。
生成器G和判别器D通过博弈的方式进行训练,最终希望生成器G能够生成难以区分的样本。
1.2 GAN的损失函数
GAN的损失函数被定义为最大化判别器对真实样本的评分和最小化判