AI学习指南DeepSeek篇(4)-推理加速:从FP32到4bit的魔法压缩

在这里插入图片描述

一、大模型推理的算力困境

1.1 推理成本的三座大山

成本维度 FP32模式痛点 典型优化目标
显存占用 7B模型需14GB显存 降低至1/4以下
计算延迟 生成1024token耗时3.2s 压缩至1s以内
能源消耗 单次推理耗能0.8kJ 减少60%以上

DeepSeek的量化方案在Llama-7B上实测显示:4bit量化实现78.4%的显存节省,推理速度提升2.9倍


二、量化压缩的三重境界

2.1 量化方法论演进

主流方案对比:
量化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值