文章目录
一、引言
在人工智能领域,尤其是自然语言处理(NLP)中,RAG(Retrieval-Augmented Generation,检索增强生成)技术通过结合信息检索与生成模型的优势,有效解决了大语言模型(LLM)的局限性。本文将详细阐述RAG的核心思想,包括其工作原理、技术优势以及实际应用示例。
二、RAG的核心思想
1. RAG的工作原理
RAG的核心思想是通过“检索-生成”双重机制来提高生成模型的表现。具体来说,RAG的工作流程可以分为以下几个步骤:
-
问题理解与检索:当RAG模型接收到用户的问题或请求时,它会利用检索模块从预定义的知识库或文档集合中寻找与问题最相关的文本片段。这些片段可以是短语、句子、段落甚至是整个文档,为后续的答案生成提供了重要依据。
-
信息融合与生成:检索到的相关信息会被传递给生成模块,生成模块将这些信息与用户的问