UVA 11549 - Calculator Conundrum Floyd判圈法

Problem C

CALCULATOR CONUNDRUM

Alice got a hold of an old calculator that can display n digits. She was bored enough to come up with the following time waster.

She enters a number k then repeatedly squares it until the result overflows. When the result overflows, only the n most significant digits are displayed on the screen and an error flag appears. Alice can clear the error and continue squaring the displayed number. She got bored by this soon enough, but wondered:

“Given n and k, what is the largest number I can get by wasting time in this manner?”

Program Input

The first line of the input contains an integer t (1 ≤ t ≤ 200), the number of test cases. Each test case contains two integers n (1 ≤ n ≤ 9) and k (0 ≤ k < 10n) where n is the number of digits this calculator can display k is the starting number.

Program Output

For each test case, print the maximum number that Alice can get by repeatedly squaring the starting number as described.

Sample Input & Output

INPUT

2 1 6 2 99 
OUTPUT
9
99

Calgary Collegiate Programming Contest 2008


Floyd判圈法



#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <cstring>
#include <map>
#include <cmath>
#include <string>
#include <queue>
#include <set>

using namespace std;

#ifdef WIN
typedef __int64 LL;
#define iform "%I64d"
#define oform "%I64d\n"
#else
typedef long long LL;
#define iform "%lld"
#define oform "%lld\n"
#endif


const int INF = 0x3f3f3f3f;
const int maxn = 100 + 10;

int buf[20], bi;
int next(int n, int k) {
	LL t = (LL) k * k;
	bi = 0;
	while(t) {
		buf[bi++] = t % 10;
		t /= 10;
	}
	int res = 0;
	for(int i=bi-1; i>=max(0, bi-n); i--) {
		res = res * 10 + buf[i];
	}
	return res;
}

int main() {
	int T;

	scanf("%d", &T);
	while(T--) {
		int n, k;
		scanf("%d%d", &n, &k);
		int ans = k;
		int k1=k, k2=k;
		do {
			k1 = next(n, k1);
			k2 = next(n, k2); if(k2 > ans) ans = k2;
			k2 = next(n, k2); if(k2 > ans) ans = k2;
		} while(k1 != k2);
		printf("%d\n", ans);
	}

	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值