力扣之841. 钥匙和房间

本文探讨了如何解决一个经典的图遍历问题——解锁房间。通过深度优先搜索(DFS)算法,实现了一种方法来判断是否能从0号房间出发访问所有房间。文章详细解释了算法的工作原理,包括如何使用集合数据结构来跟踪已访问的房间,以及如何递归地访问每个房间内的钥匙所对应的房间。
摘要由CSDN通过智能技术生成

有 N 个房间,开始时你位于 0 号房间。每个房间有不同的号码:0,1,2,…,N-1,并且房间里可能有一些钥匙能使你进入下一个房间。

在形式上,对于每个房间 i 都有一个钥匙列表 rooms[i],每个钥匙 rooms[i][j] 由 [0,1,…,N-1] 中的一个整数表示,其中 N = rooms.length。 钥匙 rooms[i][j] = v 可以打开编号为 v 的房间。

最初,除 0 号房间外的其余所有房间都被锁住。

你可以自由地在房间之间来回走动。

如果能进入每个房间返回 true,否则返回 false。

示例 1:

输入: [[1],[2],[3],[]]
输出: true
解释:
我们从 0 号房间开始,拿到钥匙 1。
之后我们去 1号房间,拿到钥匙 2。
然后我们去 2 号房间,拿到钥匙 3。
最后我们去了 3 号房间。
由于我们能够进入每个房间,我们返回 true。

示例 2:

输入:[[1,3],[3,0,1],[2],[0]]
输出:false
解释:我们不能进入 2 号房间。

提示:

1 <= rooms.length <= 1000
0 <= rooms[i].length <= 1000
所有房间中的钥匙数量总计不超过3000。

/**
 * @param {number[][]} rooms
 * @return {boolean}
 */
var canVisitAllRooms = function (rooms) {
    let set = new Set();
    for (let i = 1; i < rooms.length; i++) {
        set.add(i);
    }
    const dfs = (temp) => {
        for (let item of temp) {
            if (set.has(item)) {
                set.delete(item);
                dfs(rooms[item]);
            }
        }
    }
    dfs(rooms[0]);
    return set.size == 0;
};

自己写的算法永远不能优化时间和空间。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值