卡拉兹(Callatz)猜想:
对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?
输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式:输出从n计算到1需要的步数。
输入样例:3输出样例:
5
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int num = scanner.nextInt(); System.out.println(getCallatzStep(num)); } private static int getCallatzStep(int num) { if(num < 1 || num > 1000){ return 0; } int step = 0; while(num != 1){ num = num % 2 == 0 ? num >> 1 : (num * 3 + 1) >> 1; step++; } return step; } }
评测结果
时间 | 结果 | 得分 | 题目 | 语言 | 用时(ms) | 内存(kB) | 用户 |
---|---|---|---|---|---|---|---|
4月30日 09:06 | 答案正确 | 15 | 1001 | Java (javac 1.6.0) | 81 | 10516 | zspring |
测试点
测试点 | 结果 | 用时(ms) | 内存(kB) | 得分/满分 |
---|---|---|---|---|
0 | 答案正确 | 81 | 10468 | 9/9 |
1 | 答案正确 | 80 | 10516 | 2/2 |
2 | 答案正确 | 80 | 10488 | 2/2 |
3 | 答案正确 | 81 | 10332 | 1/1 |
4 | 答案正确 | 81 | 10332 | 1/1 |