1001. 害死人不偿命的(3n+1)猜想

卡拉兹(Callatz)猜想:

对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……

我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?

输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。

输出格式:输出从n计算到1需要的步数。

输入样例:
3
输出样例:
5


import java.util.Scanner;

public class Main {

  public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
    int num = scanner.nextInt();
    System.out.println(getCallatzStep(num));
  }

  private static int getCallatzStep(int num) {
    if(num < 1 || num > 1000){
      return 0;
    }
    int step = 0;
    while(num != 1){
      num = num % 2 == 0 ? num >> 1 : (num * 3 + 1) >> 1;
      step++;
    }
    return step;
  }

}

评测结果

时间结果得分题目语言用时(ms)内存(kB)用户
4月30日 09:06答案正确151001Java (javac 1.6.0)8110516zspring

测试点

测试点结果用时(ms)内存(kB)得分/满分
0答案正确81104689/9
1答案正确80105162/2
2答案正确80104882/2
3答案正确81103321/1
4答案正确81103321/1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值