背包问题模板总结

这篇博客总结了背包问题的三种类型:0/1背包、完全背包和组合背包,详细介绍了各自的状态转移方程,并给出了不同类型的解题模板。通过具体的例题,如分割等和子集、零钱兑换、完全平方数问题等,帮助读者深入理解并掌握背包问题的解决方法。此外,还讨论了如何优化时间复杂度和如何应用背包策略解决实际问题。
摘要由CSDN通过智能技术生成

三种背包比较

01背包
N件物品,每件物品有价值V和消耗的容量C, 背包的容量有限,一个物品只能取一次,什么情况下价值最大?
完全背包
N件物品,每件物品有价值V和消耗的容量C, 背包容量有限,一个物品可以无限取多次,什么情况下价值最大?
多重背包 属于完全背包的一种
N件物品,每件物品有价值V和消耗的容量C, 背包容量有限,一个物品最多可以取M次,什么情况下价值最大?
‘组合背包’
N件物品,每件物品有价值V和消耗的容量C,背包容量有限,求装满背包的组合个数。

状态转移方程

01背包状态转移方程

f(v) = max(f(v), f(v - Ci) + Wi)
//其中f(v)表示容量为v的背包的最大价值

完全背包状态转移方程

f(v) = max{
   f(v - k * Ci) + k * Wi| 0 <= k * Ci <= v}
// k表示物品可以被取0至多次

多重背包状态转移方程

f(v) = max{
   f(v - k * Ci) + k * Wi | 0 <= k <= Mi}

状态转移方程其实好理解,通过例题来熟悉。

分类解题模板

首先是背包分类的模板:

  • 1、0/1背包:外循环nums,内循环target,target倒序且target>=nums[i];
  • 2、完全背包:外循环nums,内循环target,target正序且target>=nums[i];
  • 3、组合背包:外循环target,内循环nums,target倒序且target>=nums[i];(倒序正序需要看01还是完全)
  • 4、分组背包:这个比较特殊,需要三重循环:外循环背包bags,内部两层循环根据题目的要求转化为1,2,3三种背包类型的模板

然后是问题分类的模板:

  • 1、最值问题: dp[i] = max/min(dp[i], dp[i-nums]+1)或dp[i] = max/min(dp[i], dp[i-num]+nums);
  • 2、存在问题(bool):dp[i]=dp[i]||dp[i-num];
  • 3、组合问题:dp[i]+=dp[i-num];

例题

分割等和子集

链接🔗
给你一个 只包含正整数 的 非空 数组 nums 。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。

通过判断是否可以正好组成容量为1/2sum的背包来判断是否可以划分子数组。
01背包, 外层num, 内target, 逆序

class Solution {
   
public:
    bool canPartition(vector<int>& nums) {
   
        int sum = 0;
        for(const int & i: nums)sum += i;
        if(sum%2) return false;
        sum /= 2;

        // 01 背包
        vector<bool> dp(sum+1, false);
        dp[0] = true;
        for(int i = 0; i < nums.size(); i++){
   
            for(int j = sum; j >= nums[i]; j--){
   
                dp[j] = dp[j] || dp[j - nums[i]];
            }
        }
        return dp[sum];
    }
};

零钱兑换

链接🔗

给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。

你可以认为每种硬币的数量是无限的。
简单的例子,完全背包,外层num,内层target, 顺序

class Solution {
   
public:
    int coinChange(vector<int>& coins, int amount) {
   
        vector<int>f(amount + 1, INT_MAX);
        f[
### 回答1: 多重背包问题是指在给定容量和物品的价值和重量的情况下,如何最大限度地装入物品,使得总价值最大化的问。它的模板是:给定N种物品和一个容量为V的背包,每种物品有无限件可用,每件物品的重量是w[i],其价值是v[i]。求解将哪些物品装入背包可使价值总和最大。 ### 回答2: 多重背包问题是一个经典的组合优化问,它是在0/1背包问题的基础上进行了扩展。在多重背包问题中,每个物品可以被选择的次数不再是1次,而是有一个确定的上限k次(k>1)。我们需要选择一些物品放入背包中,使得它们的总体积不超过背包的容量,并且使得它们的总价值最大化。 要解决多重背包问题,可以使用动态规划的方法。首先,我们定义一个二维数组dp[i][j],其中i表示前i个物品,j表示背包的容量。dp[i][j]表示当只考虑前i个物品、背包容量为j时,能够获取的最大价值。然后,我们可以使用如下的状态转移方程来计算dp[i][j]的值: dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]]+w[i], dp[i-1][j-2v[i]]+2w[i], ..., dp[i-1][j-kv[i]]+kw[i]) 其中,v[i]表示第i个物品的体积,w[i]表示第i个物品的价值,k表示第i个物品的可选次数。上述状态转移方程的意义是,我们可以选择不取第i个物品,或者分别取1次、2次、...、k次第i个物品,选择这些情况下的最大价值。 最后,我们可以通过遍历所有的物品和背包容量,计算出dp[n][m],其中n表示物品的个数,m表示背包的容量。dp[n][m]即为问的解,表示只考虑前n个物品、背包容量为m时能够获取的最大价值。 综上所述,多重背包问题的解决方法是利用动态规划,通过定义状态转移方程和计算数组dp的值,找到问的最优解。希望以上介绍对您有所帮助。 ### 回答3: 多重背包问题是常见的背包问题之一,与0-1背包问题和完全背包问题类似,但有一些区别。 在多重背包问题中,给定n个物品和一个容量为V的背包,每个物品有两个属性:重量w和价值v。同时,每个物品还有对应的个数限制c,表示该物品的数量最多可以选择c次。 我们需要选择物品放入背包,使得背包的总容量不超过V,同时物品的总价值最大。 多重背包问题可以用动态规划来解决。 我们可以定义一个二维数组dp,其中dp[i][j]表示前i个物品中选择若干个物品放入容量为j的背包时的最大价值。 根据多重背包问题的特点,我们需要对每个物品的个数进行遍历,并依次判断放入背包的个数是否超过c。 具体的状态转移方程为: dp[i][j] = max(dp[i-1][j-k*w[i]] + k*v[i]),其中0 <= k <= min(c[i], j/w[i]) 最后,需要注意的是多重背包问题的时间复杂度较高,为O(N*V*∑(c[i])),其中N是物品的数量,V是背包的容量,∑(c[i])表示物品的个数限制的总和。 总结而言,多重背包问题是在0-1背包问题和完全背包问题基础上的一种更复杂的情况,需要对每个物品的个数进行遍历和判断,采用动态规划求解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值