深入浅出:Python正则表达式
正则表达式(Regular Expression,简称 regex 或 regexp)是一种强大的文本处理工具,广泛用于字符串匹配、查找、替换等操作。Python 通过 re 模块提供了对正则表达式的全面支持。
正则表达式的基本概念
正则表达式是一种描述字符模式的规则语言,它允许我们定义复杂的字符串匹配规则。通过正则表达式,我们可以轻松地在文本中查找、提取、替换特定的模式。
元字符
正则表达式使用一些特殊的元字符来表示不同的匹配规则。以下是一些常见的元字符及其含义:
.:匹配任意单个字符(除换行符外)。^:匹配字符串的开头。$:匹配字符串的结尾。*:匹配前面的字符零次或多次。+:匹配前面的字符一次或多次。?:匹配前面的字符零次或一次。[]:匹配方括号内的任意一个字符。[^]:匹配不在方括号内的任意一个字符。|:逻辑或,匹配两个模式中的任意一个。():分组,将多个字符组合成一个单元。\d:匹配任意数字(等价于[0-9])。\D:匹配任意非数字(等价于[^0-9])。\s:匹配任意空白字符(空格、制表符、换行符等)。\S:匹配任意非空白字符。\w:匹配任意字母、数字或下划线(等价于[a-zA-Z0-9_])。\W:匹配任意非字母、数字或下划线。
示例:匹配电话号码
假设我们要匹配一个简单的电话号码格式(如 123-456-7890),可以使用以下正则表达式:
import re
pattern = r'\d{3}-\d{3}-\d{4}'
text = "我的电话号码是 123-456-7890。"
match = re.search(pattern, text)
if match:
print(f"找到电话号码: {
match.group()}") # 输出: 找到电话号码: 123-456-7890
量词
量词用于指定某个字符或字符集出现的次数。常见的量词包括:
*:零次或多次。+:一次或多次。?:零次或一次。{n}:恰好 n 次。{n,}:至少 n 次。{m,n}:至少 m 次,至多 n 次。
示例:匹配电子邮件地址
电子邮件地址通常由用户名、@符号和域名组成。我们可以使用以下正则表达式来匹配电子邮件地址:
import re
pattern = r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
text = "请发送邮件到 example@example.com。"
match = re.search(pattern, text)
if match:
print(f"找到电子邮件地址: {
match.group()}") # 输出: 找到电子邮件地址: example@example.com
分组与捕获
使用圆括号 () 可以将多个字符组合成一个单元,称为“分组

最低0.47元/天 解锁文章
433

被折叠的 条评论
为什么被折叠?



