Little Bolek has found a picture with n mountain peaks painted on it. The n painted peaks are represented by a non-closed polyline, consisting of 2n segments. The segments go through 2n + 1 points with coordinates (1, y1), (2, y2), ..., (2n + 1, y2n + 1), with the i-th segment connecting the point (i, yi) and the point (i + 1, yi + 1). For any even i (2 ≤ i ≤ 2n) the following condition holds: yi - 1 < yi and yi > yi + 1.
We shall call a vertex of a polyline with an even x coordinate a mountain peak.

Bolek fancied a little mischief. He chose exactly k mountain peaks, rubbed out the segments that went through those peaks and increased each peak's height by one (that is, he increased the y coordinate of the corresponding points). Then he painted the missing segments to get a new picture of mountain peaks. Let us denote the points through which the new polyline passes on Bolek's new picture as (1, r1), (2, r2), ..., (2n + 1, r2n + 1).
Given Bolek's final picture, restore the initial one.
The first line contains two space-separated integers n and k (1 ≤ k ≤ n ≤ 100). The next line contains 2n + 1 space-separated integers r1, r2, ..., r2n + 1 (0 ≤ ri ≤ 100) — the y coordinates of the polyline vertices on Bolek's picture.
It is guaranteed that we can obtain the given picture after performing the described actions on some picture of mountain peaks.
Print 2n + 1 integers y1, y2, ..., y2n + 1 — the y coordinates of the vertices of the polyline on the initial picture. If there are multiple answers, output any one of them.
3 2 0 5 3 5 1 5 2
0 5 3 4 1 4 2
1 1 0 2 0
0 1 0
解题说明:就是找比旁边两个低谷高度高1以上的山峰,高度减1输出就可以了。只把先遇到的 k 个符合条件的山峰高度-1输出,后面的不管。注意山峰点肯定是在奇数的位置,偶数的部分都是山谷,需要加一个判断。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include<set>
#include <algorithm>
using namespace std;
int main()
{
int a[300],n,k,i;
scanf("%d %d",&n,&k);
n=2*n+1;
for(i=0;i<n;i++)
{
scanf("%d",&a[i]);
}
for(i=0;i<n;i++)
{
if(i%2==1)
{
if(a[i]>a[i-1]+1&&a[i]>a[i+1]+1&&k>0)
{
a[i]--;
k--;
}
}
printf("%d ",a[i]);
}
printf("\n");
}