O(n)
一、ACwing
输入一个长度为n的整数序列,从中找出一段长度不超过m的连续子序列,使得子序列中所有数的和最大。
输入格式
第一行输入两个整数n,m。
第二行输入n个数,代表长度为n的整数序列。
同一行数之间用空格隔开。
输出格式
输出一个整数,代表该序列的最大子序和。
数据范围
1≤n,m≤300000
输入样例:
6 4
1 -3 5 1 -2 3
输出样例:
7
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#define ll long long
#define llu unsigned ll
using namespace std;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const int maxn=301000;
ll sum[maxn];
int main(void)
{
int n,m;
scanf("%d%d",&n,&m);
sum[0]=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&sum[i]);
sum[i]+=sum[i-1];
}
deque<int>q;
q.push_back(0);
ll ans=-lnf;
for(int i=1;i<=n;i++)
{
while(q.size()&&q.front()<i-m) q.pop_front();
ans=max(ans,sum[i]-sum[q.front()]);
while(q.size()&&sum[q.back()]>=sum[i]) q.pop_back();
q.push_back(i);
}
printf("%lld\n",ans);
return 0;
}
二、P1886 滑动窗口
现在有一堆数字共N个数字(N<=10^6),以及一个大小为k的窗口。现在这个从左边开始向右滑动,每次滑动一个单位,求出每次滑动后窗口中的最大值和最小值。
例如:
The array is [1 3 -1 -3 5 3 6 7], and k = 3.
输入格式
输入一共有两行,第一行为n,k。
第二行为n个数(<INT_MAX).
输出格式
输出共两行,第一行为每次窗口滑动的最小值
第二行为每次窗口滑动的最大值
输入输出样例
输入 #1 复制
8 3
1 3 -1 -3 5 3 6 7
输出 #1 复制
-1 -3 -3 -3 3 3
3 3 5 5 6 7
说明/提示
50%的数据,n<=10^5
100%的数据,n<=10^6
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<vector>
#define ll long long
#define llu unsigned ll
using namespace std;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const int maxn=1001000;
int a[maxn];
int main(void)
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
deque<int>q;
for(int i=1;i<=n;i++)
{
while(q.size()&&q.front()<=i-m) q.pop_front();
while(q.size()&&a[q.back()]>=a[i]) q.pop_back();
q.push_back(i);
if(i>=m)
{
if(i!=m)putchar(' ');
printf("%d",a[q.front()]);
}
}
putchar('\n');
q.clear();
for(int i=1;i<=n;i++)
{
while(q.size()&&q.front()<=i-m) q.pop_front();
while(q.size()&&a[q.back()]<=a[i]) q.pop_back();
q.push_back(i);
if(i>=m)
{
if(i!=m)putchar(' ');
printf("%d",a[q.front()]);
}
}
putchar('\n');
return 0;
}