题面:
题意:
给定一个字符串s,计算其中各子串中A、E、I、O、U、Y所占比例,输出比例之和。
题解:
假定sum[i]表示1~i中元音字母的个数,len表示字符串总长度,字符串从下标1开始。
对于长度为1的子串,每个元音字母都要用1次,即(sum[len] -sum[0]) / 1,
对于长度为2的子串,s[2]到第s[len-1]的元音字母都要用2次,而第s[1]和s[len]位置的元音字母只需用1次,即( (sum[len] -sum[0]) + (sum[len-1] - sum[1]) ) / 2,
对于长度为3的子串,s[3]到第s[len-2]的元音字母都要用3次,s[2]和s[len-1]的元音字母都要用2次,而第s[1]和s[len]位置的元音字母只需用1次,即( (sum[len] -sum[0]) + (sum[len-1] - sum[1]) + (sum[len-2] - sum[2]) ) / 3,
依此类推,各个长度的结果加起来就是答案。
也不知道当时在秦皇岛是怎么写出这个题来的。。。。
怎么感觉水平也是在下降,看都看不懂我当时的代码了。
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<set>
#define ll long long
#define llu unsigned ll
#define ld long double
#define ui unsigned int
#define pr make_pair
#define pb push_back
#define ui unsigned int
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define len(x) (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define forhead(x) for(int i=head[(x)];i;i=nt[i])
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=1e9+7;
const double eps=1e-8;
const double pi=acos(-1.0);
const int maxn=500100;
const int maxm=100100;
const int up=100000;
const int hashp=13331;
char str[maxn];
int sum[maxn];
string s="AEIOUY";
int main(void)
{
scanf("%s",str+1);
int len=strlen(str+1);
for(int i=1;i<=len;i++)
{
sum[i]=sum[i-1];
if(s.find(str[i])!=-1)
sum[i]++;
}
double ans=0,res=0;
for(int i=1;i<=len;i++)
{
res+=sum[len-i+1]-sum[i-1];
ans+=res/i;
}
printf("%.7f\n",ans);
return 0;
}