题面:
题意:
给出一个N×M 的网格,一些位置是障碍,其他位置是空地,求是否存在一个用 1×2的骨牌(可以转成 2×1)铺满空地的方案,以及方案是否唯一。
骨牌不能放到网格以外,不能重叠,不能覆盖在障碍物上。
N,M≤2000
题解:
如果一个空地的周围四联通部分只有一个空地,那么必定有一个骨牌要放在这两个空地上。同时,这一次放置可能会影响另一个空地的四联通部分的选择方案。
这就像一个拓扑排序。首先记录每一个点四联通的格子里空地的数量,将数量为1的放进队列里,然后逐个放置,check 周围是否有新出现的方案唯一的格子。
最后如果所有空地被填满了,方案就唯一,反之多解。
无解和多解都输出 “Not unique” ,所以不需要再判断无解。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<set>
#define ll long long
#define llu unsigned ll
#define ld long double
#define ui unsigned int
#define pr make_pair
#define pb push_back
#define ui unsigned int
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define len(x) (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define forhead(x) for(int i=head[(x)];i;i=nt[i])
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=1e9+7;
const double eps=1e-8;
const double pi=acos(-1.0);
const int maxm=100100;
const int up=100000;
const int hashp=13331;
const int maxn=2100;
int n,m;
int d[maxn][maxn];
char str[maxn][maxn];
pair<int,int>q[maxn*maxn];
int cx[]={-1,1,0,0};
int cy[]={0,0,-1,1};
int main(void)
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%s",str[i]+1);
int l=1,r=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(str[i][j]!='.') continue;
for(int k=0;k<4;k++)
d[i][j]+=str[i+cx[k]][j+cy[k]]=='.';
if(d[i][j]==1)
q[++r]=pr(i,j);
}
}
while(l<=r)
{
int x=q[l].first;
int y=q[l++].second;
int xx=x,yy=y;
if(d[x][y]!=1) continue;//避免入队的时候度数是1,但是后来度数被改变的情况
if(str[x][y]!='.') continue;//如果用过了,就不再用了
if(str[x+1][y]=='.')
{
str[x][y]='^';
str[x+1][y]='v';
xx++;
}
if(str[x-1][y]=='.')
{
str[x-1][y]='^';
str[x][y]='v';
xx--;
}
if(str[x][y+1]=='.')
{
str[x][y]='<';
str[x][y+1]='>';
yy++;
}
if(str[x][y-1]=='.')
{
str[x][y-1]='<';
str[x][y]='>';
yy--;
}
if(x==xx&&y==yy) continue; //如果周围没有'.'
d[xx][yy]--;//这里其实xx,yy已经被选用了,应该直接将这个点的可选删除
//d[xx][yy]=0;
//因为一开始判断了当前点是不是'.',所以这样写也可。
for(int k=0;k<4;k++)
{
int nx=xx+cx[k];
int ny=yy+cy[k];
if(--d[nx][ny]==1) q[++r]=pr(nx,ny);
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(str[i][j]=='.')
{
printf("Not unique\n");
return 0;
}
}
}
for(int i=1;i<=n;i++)
printf("%s\n",str[i]+1);
return 0;
}