2020牛客暑期多校训练营(第一场)J、Easy Integration (数学、分部积分)

本文介绍了如何运用数学中的分部积分法解决定积分问题,具体展示了将积分表达式化为 ∫ xn (1-x)n dx 后进行分部积分的过程,最终得出结果为 n!/((n+1)*(n+2) * … * (2n+1) )。
摘要由CSDN通过智能技术生成

题目链接

题面:
在这里插入图片描述

题意:
求给定的定积分。

题解,化成 ∫ xn (1-x)n dx 然后用分部积分法即可得。
分部积分法:∫ udv = uv - ∫ vdu

最终为 n!/((n+1)*(n+2) * … * (2n+1) )

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值