2020牛客暑期多校训练营(第一场) D、Quadratic Form (数学,矩阵运算)

该博客介绍了如何利用拉格朗日乘数法解决一个涉及二次型函数和矩阵运算的优化问题。在约束条件下,通过构建拉格朗日函数并求偏导数,找到目标函数取极值时的解。讨论了矩阵的对称性质,并给出了求解过程和最终代码实现。
摘要由CSDN通过智能技术生成

题目链接

题面:
在这里插入图片描述

题意:
给定一些约束条件求目标函数的最大值。
其中 det(A) ≠ 0 (mod 998244353),保证了在 mod 998244353 下矩阵A 可逆。

题解:
没有想明白为什么会在 ∑ i = 1 n ∑ j = 1 n A i , j x i x j = 1 \sum_{i=1}^n\sum_{j=1}^nA_{i,j}x_ix_j=1 i=1nj=1nAi,jxixj=1 的条件下计算目标函数的最大值。

我们假设目标函数为 f ( x 1 , . . . , x n ) = ∑ i = 1 n b i x i f(x_1,...,x_n)=\sum_{i=1}^nb_ix_i f(x1,...,xn)=i=1nbixi,因为最终求的是平方,那么一定在 f f f取极值时,最终答案取极值

约束条件为 g ( x 1 , . . . , x n ) = ∑ i = 1 n ∑ j = 1 n A i , j x i x j = 1 g(x_1,...,x_n)=\sum_{i=1}^n\sum_{j=1}^nA_{i,j}x_ix_j=1 g(x1,...,xn)=i=1nj=1nAi,jxixj=1

拉个朗日函数为 L ( x 1 , . . . , x n , λ ) = ∑ i = 1 n b i x i + λ ( ∑ i = 1 n ∑ j = 1 n A i , j x i x j − 1 ) L(x1,...,xn,\lambda)=\sum_{i=1}^nb_ix_i+\lambda(\sum_{i=1}^n\sum_{j=1}^nA_{i,j}x_ix_j-1) L(x1,...,xn,λ)=i=1nbixi+λ(i=1nj=1nAi,jxixj1)

对L的每个变量求偏导,求偏导的时候 ∑ i = 1 n ∑ j = 1 n A i , j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值