题面:
题意:
给定一些约束条件求目标函数的最大值。
其中 det(A) ≠ 0 (mod 998244353),保证了在 mod 998244353 下矩阵A 可逆。
题解:
没有想明白为什么会在 ∑ i = 1 n ∑ j = 1 n A i , j x i x j = 1 \sum_{i=1}^n\sum_{j=1}^nA_{i,j}x_ix_j=1 ∑i=1n∑j=1nAi,jxixj=1 的条件下计算目标函数的最大值。
我们假设目标函数为 f ( x 1 , . . . , x n ) = ∑ i = 1 n b i x i f(x_1,...,x_n)=\sum_{i=1}^nb_ix_i f(x1,...,xn)=∑i=1nbixi,因为最终求的是平方,那么一定在 f f f取极值时,最终答案取极值
约束条件为 g ( x 1 , . . . , x n ) = ∑ i = 1 n ∑ j = 1 n A i , j x i x j = 1 g(x_1,...,x_n)=\sum_{i=1}^n\sum_{j=1}^nA_{i,j}x_ix_j=1 g(x1,...,xn)=∑i=1n∑j=1nAi,jxixj=1
拉个朗日函数为 L ( x 1 , . . . , x n , λ ) = ∑ i = 1 n b i x i + λ ( ∑ i = 1 n ∑ j = 1 n A i , j x i x j − 1 ) L(x1,...,xn,\lambda)=\sum_{i=1}^nb_ix_i+\lambda(\sum_{i=1}^n\sum_{j=1}^nA_{i,j}x_ix_j-1) L(x1,...,xn,λ)=∑i=1nbixi+λ(∑i=1n∑j=1nAi,jxixj−1)
对L的每个变量求偏导,求偏导的时候 ∑ i = 1 n ∑ j = 1 n A i , j