题面:
题意:
给定一个矩阵,从中选取某些行和列,将行列交界处的元素拿出来,按照原相对顺序组成一个新的矩阵(不连续子矩阵),问这个矩阵的最大权值。
矩阵的权值定义为:矩阵全部的元素之和 除以 矩阵最下面那一行的元素之和。
题解:
可以证明:
a b ≤ c d ( a , b , c , d > 0 ) − > a b ≤ a + c b + d ≤ c d \frac{a}{b}\le \frac{c}{d} \space (a,b,c,d>0)->\frac{a}{b}\le\frac{a+c}{b+d}\le\frac{c}{d} ba≤dc