HDU -- 2421 Deciphering Password(基础数论)

题目vj链接

题面:
在这里插入图片描述

题意:
给定两个数 A , B A,B A,B,求 A B A^B AB的各因子的因子个数的立方之和。

题解:
我们设 d d d 为因子个数函数, d ( n ) d(n) d(n) 表示 n n n 的正因子个数。
那么 d d d 函数为积性函数,若 g c d ( n , m ) = 1 gcd(n,m)=1 gcd(n,m)=1,那么 d ( n m ) = d ( n ) ∗ d ( m ) d(nm)=d(n)*d(m) d(nm)=d(n)d(m),那么则有:
d 3 ( n m ) = d 3 ( n ) ∗ d 3 ( m ) d^3(nm)=d^3(n)*d^3(m) d3(nm)=d3(n)d3(m)

我们设唯一分解 x = p 1 e 1 ∗ p 2 e 2 ∗ p 3 e 3 ∗ . . . ∗ p k e k x=p_1^{e_1}*p_2^{e_2}*p_3^{e_3}*...*p_k^{e_k} x=p1e1p2e2p3e3...pkek,那么 d ( x ) = ( e 1 + 1 ) ∗ ( e 2 + 1 ) ∗ ( e 3 + 1 ) ∗ . . . ∗ ( e k + 1 ) d(x)=(e_1+1)*(e_2+1)*(e_3+1)*...*(e_k+1) d(x)=(e1+1)(e2+1)(e3+1)...(ek+1)

现在我们设 A B = p 1 e 1 ∗ p 2 e 2 ∗ p 3 e 3 ∗ . . . ∗ p k e k A^B=p_1^{e_1}*p_2^{e_2}*p_3^{e_3}*...*p_k^{e_k} AB=p1e1p2e2p3e3...pkek,我们以以下形式表示 A B A^B AB的因子:

( p 1 0 , p 1 1 , p 1 2 , . . . , p 1 e 1 ) ∗ ( p 2 0 , p 2 1 , p 2 2 , . . . , p 2 e 2 ) ∗ . . . ∗ ( p k 0 , p k 1 , p k 2 , . . . , p k e k ) (p_1^0,p_1^1,p_1^2,...,p_1^{e_1})*(p_2^0,p_2^1,p_2^2,...,p_2^{e_2})*...*(p_k^0,p_k^1,p_k^2,...,p_k^{e_k}) (p10,p11,p12,...,p1e1)(p20,p21,p22,...,p2e2)...(pk0,pk1,pk2,...,pkek)

我们可以从每一对小括号中选择一个数来组成 A B A^B AB,且每个小括号选出来的数与其他小括号选出来的数一定都是互质的。

假设我们现在从第一个小括号里面选出来的数是 p 1 0 p_1^0 p10,其后的数任选均可组成一个 A B A^B AB的因子,那么现在因子个数的立方的贡献为 ( ( 0 + 1 ) 3 ) ∗ ( 1 3 + 2 3 + 3 3 + . . . + ( e 2 + 1 ) 3 ) ∗ . . . ∗ ( 1 3 + 2 3 + 3 3 + . . . + ( e k + 1 ) 3 ) ((0+1)^3)*(1^3+2^3+3^3+...+(e_2+1)^3)*...*(1^3+2^3+3^3+...+(e_k+1)^3) ((0+1)3)(13+23+33+...+(e2+1)3)...(13+23+33+...+(ek+1)3)

假设我们现在从第一个小括号里面选出来的数是 p 1 1 p_1^1 p11,其后的数任选均可组成一个 A B A^B AB的因子,那么现在因子个数的立方的贡献为 ( ( 1 + 1 ) 3 ) ∗ ( 1 3 + 2 3 + 3 3 + . . . + ( e 2 + 1 ) 3 ) ∗ . . . ∗ ( 1 3 + 2 3 + 3 3 + . . . + ( e k + 1 ) 3 ) ((1+1)^3)*(1^3+2^3+3^3+...+(e_2+1)^3)*...*(1^3+2^3+3^3+...+(e_k+1)^3) ((1+1)3)(13+23+33+...+(e2+1)3)...(13+23+33+...+(ek+1)3)

那么最终答案 a n s = ( 1 3 + 2 3 + 3 3 + . . . + ( e 1 + 1 ) 3 ) ∗ ( 1 3 + 2 3 + 3 3 + . . . + ( e 2 + 1 ) 3 ) ∗ . . . ∗ ( 1 3 + 2 3 + 3 3 + . . . + ( e k + 1 ) 3 ) ans=(1^3+2^3+3^3+...+(e_1+1)^3)*(1^3+2^3+3^3+...+(e_2+1)^3)*...*(1^3+2^3+3^3+...+(e_k+1)^3) ans=(13+23+33+...+(e1+1)3)(13+23+33+...+(e2+1)3)...(13+23+33+...+(ek+1)3)

我们有公式 ∑ i = 1 n i 3 = ( ∑ i = 1 n i ) 2 = ( n ∗ ( n + 1 ) 2 ) 2 \sum_{i=1}^ni^3=(\sum_{i=1}^ni)^2=(\frac{n*(n+1)}{2})^2 i=1ni3=(i=1ni)2=(2n(n+1))2

代码:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<set>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define len(x)  (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define fhead(x) for(int i=head[(x)];i;i=nt[i])
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const int mod=10007;
const double eps=1e-8;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=5010;
const int maxm=100100;
const int maxp=100100;
const int up=100100;

int cnt=0;
int tot=0;
ll p[108],e[108];
ll a,b;

void only(ll n)
{
    memset(e,0,sizeof(e));
    tot=0;
    for(int i=2;i*i<=n;i++)
    {
        if(n%i) continue;
        p[++tot]=i;
        while(n%i==0)
        {
            e[tot]++;
            n/=i;
        }
    }
    if(n>1) p[++tot]=n,e[tot]=1;
    for(int i=1;i<=tot;i++)
        e[i]*=b;
}

int main(void)
{
    int tt=0;
    while(scanf("%lld%lld",&a,&b)!=EOF)
    {
        only(a);

        ll ans=1;
        ll res=1;
        for(int i=1;i<=tot;i++)
        {
            res=(e[i]+1)*(e[i]+2)/2;
            ans=(ans*res%mod*res)%mod;
        }
        printf("Case %d: %lld\n",++tt,ans%mod);
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值