2020 Multi-University Training Contest 6---- 6833、A Very Easy Math Problem(莫比乌斯函数)

题目链接

题面:
在这里插入图片描述

题意:
∑ a 1 = 1 n ∑ a 2 = 1 n . . . ∑ a x = 1 n ( ∏ j = 1 x a j k ) f ( g c d ( a 1 , a 2 , . . . , a x ) ) ∗ g c d ( a 1 , a 2 , . . . , a x ) \sum\limits_{a_1=1}^n\sum\limits_{a_2=1}^n...\sum\limits_{a_x=1}^n(\prod\limits_{j=1}^xa_j^k)f(gcd(a_1,a_2,...,a_x))*gcd(a_1,a_2,...,a_x) a1=1na2=1n...ax=1n(j=1xajk)f(gcd(a1,a2,...,ax))gcd(a1,a2,...,ax)

题解:
官方题解给定了 O ( n l o g n ) O(nlogn) O(nlogn) 预处理, O ( n ) O(\sqrt n) O(n )回答单次询问的解法。

只会 O ( n n + T n ) O(n\sqrt n+T\sqrt n) O(nn +Tn )的解法,下面介绍 O ( n n + T n ) O(n\sqrt n+T\sqrt n) O(nn +Tn )的解法。

a n s = ∑ a 1 = 1 n ∑ a 2 = 1 n . . . ∑ a x = 1 n ( ∏ j = 1 x a j k ) f ( g c d ( a 1 , a 2 , . . . , a x ) ) ∗ g c d ( a 1 , a 2 , . . . , a x ) ans=\sum\limits_{a_1=1}^n\sum\limits_{a_2=1}^n...\sum\limits_{a_x=1}^n(\prod\limits_{j=1}^xa_j^k)f(gcd(a_1,a_2,...,a_x))*gcd(a_1,a_2,...,a_x) ans=a1=1na2=1n...ax=1n(j=1xajk)f(gcd(a1,a2,...,ax))gcd(a1,a2,...,ax)

容易发现 f ( x ) = μ ( x ) 2 f(x)=\mu(x)^2 f(x)=μ(x)2,我们将 f ( x ) f(x) f(x) 替换为 μ ( x ) 2 \mu(x)^2 μ(x)2
得到:

a n s = ∑ a 1 = 1 n ∑ a 2 = 1 n . . . ∑ a x = 1 n ( ∏ j = 1 x a j k ) μ ( g c d ( a 1 , a 2 , . . . , a x ) ) 2 ∗ g c d ( a 1 , a 2 , . . . , a x ) ans=\sum\limits_{a_1=1}^n\sum\limits_{a_2=1}^n...\sum\limits_{a_x=1}^n(\prod\limits_{j=1}^xa_j^k)\mu(gcd(a_1,a_2,...,a_x))^2*gcd(a_1,a_2,...,a_x) ans=a1=1na2=1n...ax=1n(j=1xajk)μ(gcd(a1,a2,...,ax))2gcd(a1,a2,...,ax)

我们先枚举 g c d gcd gcd:

a n s = ∑ d = 1 n ∑ a 1 = 1 n ∑ a 2 = 1 n . . . ∑ a x = 1 n ( ∏ j = 1 x a j k ) μ ( d ) 2 ∗ [ g c d ( a 1 , a 2 , . . . , a x ) = = d ] ∗ d ans=\sum\limits_{d=1}^n\sum\limits_{a_1=1}^n\sum\limits_{a_2=1}^n...\sum\limits_{a_x=1}^n(\prod\limits_{j=1}^xa_j^k)\mu(d)^2*[gcd(a_1,a_2,...,a_x)==d]*d ans=d=1na1=1na2=1n...ax=1n(j=1xajk)μ(d)2[gcd(a1,a2,...,ax)==d]d

那么有:

a n s = ∑ d = 1 n d k x + 1 μ ( d ) 2 ∑ a 1 = 1 n / d ∑ a 2 = 1 n / d . . . ∑ a x = 1 n / d ( ∏ j = 1 x a j k ) [ g c d ( a 1 , a 2 , . . . , a x ) = = 1 ] ans=\sum\limits_{d=1}^nd^{kx+1}\mu(d)^2\sum\limits_{a_1=1}^{n/d}\sum\limits_{a_2=1}^{n/d}...\sum\limits_{a_x=1}^{n/d}(\prod\limits_{j=1}^xa_j^k)[gcd(a_1,a_2,...,a_x)==1] ans=d=1ndkx+1μ(d)2a1=1n/da2=1n/d...ax=1n/d(j=1xajk)[gcd(a1,a2,...,ax)==1]

根据 [ g c d ( i , j ) = 1 ] = ∑ d ∣ g c d ( i , j ) μ ( d ) [gcd(i,j)=1]=\sum\limits_{d|gcd(i,j)}\mu(d) [gcd(i,j)=1]=dgcd(i,j)μ(d) 有:

a n s = ∑ d = 1 n d k x + 1 μ ( d ) 2 ∑ a 1 = 1 n / d ∑ a 2 = 1 n / d . . . ∑ a x = 1 n / d ( ∏ j = 1 x a j k ) ∑ g ∣ g c d ( a 1 , a 2 , . . . , a x ) μ ( g ) ans=\sum\limits_{d=1}^nd^{kx+1}\mu(d)^2\sum\limits_{a_1=1}^{n/d}\sum\limits_{a_2=1}^{n/d}...\sum\limits_{a_x=1}^{n/d}(\prod\limits_{j=1}^xa_j^k)\sum\limits_{g|gcd(a_1,a_2,...,a_x)}\mu(g) ans=d=1ndkx+1μ(d)2a1=1n/da2=1n/d...ax=1n/d(j=1xajk)ggcd(a1,a2,...,ax)μ(g)

转换枚举顺序,先枚举 g g g 得:

a n s = ∑ d = 1 n d k x + 1 μ ( d ) 2 ∑ g = 1 n / d μ ( g ) ∑ a 1 = 1 n / d g ∣ a 1 ∑ a 2 = 1 n / d g ∣ a 2 . . . ∑ a x = 1 n / d g ∣ a x ( ∏ j = 1 x a j k ) ans=\sum\limits_{d=1}^nd^{kx+1}\mu(d)^2\sum\limits_{g=1}^{n/d}\mu(g)\sum\limits_{a_1=1}^{n/d}g|a_1\sum\limits_{a_2=1}^{n/d}g|a_2...\sum\limits_{a_x=1}^{n/d}g|a_x(\prod\limits_{j=1}^xa_j^k) ans=d=1ndkx+1μ(d)2g=1n/dμ(g)a1=1n/dga1a2=1n/dga2...ax=1n/dgax(j=1xajk)

化简之后得到:

a n s = ∑ d = 1 n d k x + 1 μ ( d ) 2 ∑ g = 1 n / d g k x μ ( g ) ∑ a 1 = 1 ( n / d ) / g ∑ a 2 = 1 ( n / d ) / g . . . ∑ a x = 1 ( n / d ) / g ( ∏ j = 1 x a j k ) ans=\sum\limits_{d=1}^nd^{kx+1}\mu(d)^2\sum\limits_{g=1}^{n/d}g^{kx}\mu(g)\sum\limits_{a_1=1}^{(n/d)/g}\sum\limits_{a_2=1}^{(n/d)/g}...\sum\limits_{a_x=1}^{(n/d)/g}(\prod\limits_{j=1}^xa_j^k) ans=d=1ndkx+1μ(d)2g=1n/dgkxμ(g)a1=1(n/d)/ga2=1(n/d)/g...ax=1(n/d)/g(j=1xajk)

a n s = ∑ d = 1 n d k x + 1 μ ( d ) 2 ∑ g = 1 n / d g k x μ ( g ) ∑ a 1 = 1 ( n / d ) / g a 1 k ∑ a 2 = 1 ( n / d ) / g a 2 k . . . ∑ a x = 1 ( n / d ) / g a x k ans=\sum\limits_{d=1}^nd^{kx+1}\mu(d)^2\sum\limits_{g=1}^{n/d}g^{kx}\mu(g)\sum\limits_{a_1=1}^{(n/d)/g}a_1^k\sum\limits_{a_2=1}^{(n/d)/g}a_2^k...\sum\limits_{a_x=1}^{(n/d)/g}a_x^k ans=d=1ndkx+1μ(d)2g=1n/dgkxμ(g)a1=1(n/d)/ga1ka2=1(n/d)/ga2k...ax=1(n/d)/gaxk

其中 d k x + 1 , μ ( d ) 2 , g k x , μ ( g ) , ∑ a 1 = 1 ( n / d ) / g a 1 k ∑ a 2 = 1 ( n / d ) / g a 2 k . . . ∑ a x = 1 ( n / d ) / g a x k d^{kx+1},\mu(d)^2,g^{kx},\mu(g),\sum\limits_{a_1=1}^{(n/d)/g}a_1^k\sum\limits_{a_2=1}^{(n/d)/g}a_2^k...\sum\limits_{a_x=1}^{(n/d)/g}a_x^k dkx+1,μ(d)2,gkx,μ(g),a1=1(n/d)/ga1ka2=1(n/d)/ga2k...ax=1(n/d)/gaxk 均可以预处理求出,时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn)

对于外层求和 ∑ d = 1 n \sum\limits_{d=1}^n d=1n,我们可以分块去求 ∑ g = 1 n / d \sum\limits_{g=1}^{n/d} g=1n/d
而对于 ∑ g = 1 n / d \sum\limits_{g=1}^{n/d} g=1n/d,我们又可以分块去求 ∑ a 1 = 1 ( n / d ) / g a 1 k ∑ a 2 = 1 ( n / d ) / g a 2 k . . . ∑ a x = 1 ( n / d ) / g a x k \sum\limits_{a_1=1}^{(n/d)/g}a_1^k\sum\limits_{a_2=1}^{(n/d)/g}a_2^k...\sum\limits_{a_x=1}^{(n/d)/g}a_x^k a1=1(n/d)/ga1ka2=1(n/d)/ga2k...ax=1(n/d)/gaxk

这样的复杂度是 O ( T ∗ n n ) O(T*\sqrt n \sqrt n) O(Tn n ) 的。

但是仔细观察发现,对于 ∑ g = 1 n / d \sum\limits_{g=1}^{n/d} g=1n/d,我们分块去求 ∑ a 1 = 1 ( n / d ) / g a 1 k ∑ a 2 = 1 ( n / d ) / g a 2 k . . . ∑ a x = 1 ( n / d ) / g a x k \sum\limits_{a_1=1}^{(n/d)/g}a_1^k\sum\limits_{a_2=1}^{(n/d)/g}a_2^k...\sum\limits_{a_x=1}^{(n/d)/g}a_x^k a1=1(n/d)/ga1ka2=1(n/d)/ga2k...ax=1(n/d)/gaxk。对于所有的 i ∈ [ 1 , n ] , ∑ g = 1 i i\in[1,n],\sum\limits_{g=1}^i i[1,n],g=1i 全部求出来的时间复杂度是 O ( n n ) O(n\sqrt n) O(nn )。所以我们只需要把这 n n n 个状态记录下来,每个状态需要 O ( n ) O(\sqrt n) O(n ) 求解。

这样总的时间复杂度是 O ( n n + T n ) O(n\sqrt n +T \sqrt n) O(nn +Tn ) 的。

代码:

#pragma GCC optimize("Ofast","inline","-ffast-math")
#pragma GCC target("avx,sse2,sse3,sse4,mmx")
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<unordered_set>
#include<set>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
//#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define len(x)  (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define fhead(x) for(int i=head[(x)];i;i=nt[i])
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const double alpha=0.75;
const int mod=1e9+7;
const double eps=1e-8;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=200100;
const int maxm=10000100;
const int maxp=100100;
const int up=30;
int t,k,x,n;
int a[maxn],g[maxn],mu[maxn],mu2[maxn],d[maxn];
int cm[maxn],dp[maxn];
int prime[maxn],cnt=0;
bool ha[maxn];

int mypow(int a,ll b)
{
    b%=(mod-1);
    int ans=1;
    while(b)
    {
        if(b&1) ans=1ll*ans*a%mod;
        a=1ll*a*a%mod;
        b>>=1;
    }
    return ans;
}

void Mu(void)
{
    mu[1]=1;
    ha[1]=true;
    for(int i=2;i<maxn;i++)
    {
        if(!ha[i])
        {
            mu[i]=-1;
            prime[cnt++]=i;
        }
        for(int j=0;j<cnt&&i*prime[j]<maxn;j++)
        {
            ha[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            mu[i*prime[j]]=-mu[i];
        }
    }
    for(int i=1;i<maxn;i++)
    {
        d[i]=mypow(i,1ll*k*x+1);
        mu2[i]=mu[i]*mu[i];

        g[i]=mypow(i,1ll*k*x);

        cm[i]=(cm[i-1]+mypow(i,k))%mod;
        a[i]=mypow(cm[i],x);

        d[i]=(d[i-1]+mu2[i]*d[i])%mod;

        g[i]=(g[i-1]+mu[i]*g[i])%mod;

    }
}

int main(void)
{
    scanf("%d%d%d",&t,&k,&x);
    Mu();
    memset(dp,-1,sizeof(dp));
    while(t--)
    {
        scanf("%d",&n);;
        int ans=0,res=0;
        int up=0;
        for(int ld=1,rd;ld<=n;ld=rd+1)
        {
            rd=min(n,n/(n/ld));

            up=n/ld;
            if(dp[up]==-1)
            {
                res=0;
                for(int lg=1,rg;lg<=up;lg=rg+1)
                {
                    rg=min(up,up/(up/lg));
                    res=(res+1ll*(g[rg]-g[lg-1])*a[up/lg])%mod;
                }
                dp[up]=(res+mod)%mod;
            }

            ans=(ans+1ll*(d[rd]-d[ld-1])*dp[up])%mod;
        }
        printf("%d\n",(ans%mod+mod)%mod);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值