# 2020 Multi-University Training Contest 4---- HDU--6810、Imperative Meeting（组合数学）

C n m C_n^m 种方案的权重的和。

f ( s ) = ∑ i = 1 m − 1 C s i ∗ C n − s m − i ∗ m i n ( i , m − i ) f(s)=\sum\limits_{i=1}^{m-1}C_s^i*C_{n-s}^{m-i}*min(i,m-i)

f ( s ) = ∑ i = 1 p C s i ∗ C n − s m − i ∗ i + ∑ i = 1 p C s m − i ∗ C n − s i ∗ i + [ m   m o d   2 = 0 ] ∗ C s m 2 ∗ C n − s m 2 ∗ m 2 f(s)=\sum\limits_{i=1}^pC_s^i*C_{n-s}^{m-i}*i+\sum\limits_{i=1}^pC_s^{m-i}*C_{n-s}^i*i+[m\space mod\space 2=0]*C_s^{\frac{m}{2}}*C_{n-s}^{\frac{m}{2}}*\frac{m}{2}

g ( s ) = ∑ i = 1 p C s i ∗ C n − s m − i ∗ i g(s)=\sum\limits_{i=1}^pC_s^i*C_{n-s}^{m-i}*i

C s i = s ! i ! ∗ ( s − i ) ! = ( s − 1 ) ! ∗ s ( i − 1 ) ! ∗ i ∗ ( s − i ) ! = C s − 1 i − 1 ∗ s i C_s^i=\dfrac{s!}{i!*(s-i)!}=\dfrac{(s-1)!*s}{(i-1)!*i*(s-i)!}=C_{s-1}^{i-1}*\dfrac{s}{i}

g ( s ) = s ∗ ∑ i = 1 p C s − 1 i − 1 ∗ C n − s m − i = s ∗ t ( s ) g(s)=s*\sum\limits_{i=1}^pC_{s-1}^{i-1}*C_{n-s}^{m-i}=s*t(s) ，其中 t ( s ) = ∑ i = 1 p C s − 1 i − 1 ∗ C n − s m − i t(s)=\sum\limits_{i=1}^pC_{s-1}^{i-1}*C_{n-s}^{m-i}

n − 1 n-1 个位置，放置 m − 1 m-1 个球，每个球只能放在一个位置上，每个位置至多放置一个球。其中要求前 s − 1 s-1 个位置至多放置 p − 1 p-1 个球。

t ( s ) = ∑ i = 1 p C s − 1 i − 1 ∗ C n − s m − i t(s)=\sum\limits_{i=1}^pC_{s-1}^{i-1}*C_{n-s}^{m-i}

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
#include<unordered_map>
#include<unordered_set>
#include<set>
#include<ctime>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
//#define lc (cnt<<1)
//#define rc (cnt<<1|1)
#define len(x)  (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const double alpha=0.75;
const int mod=1e9+7;
const double eps=1e-8;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=1000100;
const int maxm=100100;
const int maxp=100100;
const int up=1100;

ll fac[maxn],inv[maxn];
ll t[maxn],g[maxn],h[maxn],k[maxn],ans;
int f[maxn],si[maxn],n,m;

ll mypow(ll a,ll b)
{
ll ans=1;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;
b>>=1;
}
return ans;
}

void init(void)
{
fac[0]=1;
for(int i=1;i<maxn;i++)
fac[i]=fac[i-1]*i%mod;
inv[maxn-1]=mypow(fac[maxn-1],mod-2);
for(int i=maxn-2;i>=0;i--)
inv[i]=inv[i+1]*(i+1)%mod;
}

ll C(ll n,ll m)
{
if(n<0||m<0||m>n) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}

int main(void)
{
init();
int tt;
scanf("%d",&tt);
while(tt--)
{
scanf("%d%d",&n,&m);
for(int i=2;i<=n;i++)
scanf("%d",&f[i]),si[i]=1;
ans=0;
int p=(m-1)/2;
t[1]=p?C(n-1,m-1):0;
g[1]=t[1]*1;
for(int s=2;s<=n;s++)
{
t[s]=((t[s-1]-C(s-2,p-1)*C(n-s,m-1-p)%mod)%mod+mod)%mod;
g[s]=t[s]*s%mod;
}
for(int s=1;s<=n;s++)
{
h[s]=g[n-s];
k[s]=C(s,m/2)*C(n-s,m/2)%mod*(m/2)%mod;
}
int now=0;
for(int i=n;i>=2;i--)
{
si[f[i]]+=si[i];
now=min(si[i],n-si[i]);
ans=(ans+g[now]+h[now]+(m%2==0?k[now]:0))%mod;
}
printf("%lld\n",ans);

}
return 0;
}


• 点赞
• 评论
• 分享
x

海报分享

扫一扫，分享海报

• 收藏
• 手机看

分享到微信朋友圈

x

扫一扫，手机阅读

• 打赏

打赏

_Shmily

你的鼓励将是我创作的最大动力

C币 余额
2C币 4C币 6C币 10C币 20C币 50C币
• 一键三连

点赞Mark关注该博主, 随时了解TA的最新博文

09-05 3515
08-14 118
01-29 184