题面:
题意:
有
T
T
T 种物品,第
i
i
i 种物品有
n
i
n_i
ni 个。
从中选出若干个物品组成一个集合,问集合大小位于区间 [ S , B ] [S,B] [S,B] 的不同的集合有多少个。
两个集合相同当且仅当两个集合相同种类的物品个数一样。
题解:
我们设
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] 为选择了前
i
i
i 种物品且集合大小为
j
j
j 时不同的方案数。
转移方程显然: d p [ i ] [ j ] = ∑ k = 0 m i n ( j , n i ) d p [ i − 1 ] [ j − k ] dp[i][j]=\sum\limits_{k=0}^{min(j,n_i)}dp[i-1][j-k] dp[i][j]=k=0∑min(j,ni)dp[i−1][j−k]。
那么此题的时间复杂度为 O ( T ∗ ∑ n i ∗ m a x ( n i ) ) O(T*\sum n_i*max(n_i)) O(T∗∑ni∗max(ni))
考虑化简 d p dp dp。
若 j < = n i j<=n_i j<=ni , d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1] dp[i][j]=dp[i−1][j]+dp[i][j−1]
若 j > n i j>n_i j>ni, d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] − d p [ i − 1 ] [ j − 1 − n i ] dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1-n_i] dp[i][j]=dp[i−1][j]+dp[i][j−1]−dp[i−1][j−1−ni]
时间复杂度 O ( T ∗ ∑ n i ) O(T*\sum n_i) O(T∗∑ni)
代码:
感觉数据没有出满。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
//#include<unordered_map>
//#include<unordered_set>
#include<set>
#include<ctime>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define len(x) (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define fhead(x) for(int i=head[(x)];i;i=nt[i])
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;
const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const double alpha=0.75;
const int mod=1000000;
const double eps=1e-8;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=100100;
const int maxm=100100;
const int maxp=100100;
const int up=1100;
int dp[2][maxn];
int pc[maxn];
int t,n,s,b;
int main(void)
{
while(scanf("%d%d%d%d",&t,&n,&s,&b)!=EOF)
{
memset(pc,0,sizeof(pc));
memset(dp,0,sizeof(dp));
dp[0][0]=1;
int x;
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
pc[x]++;
}
int sum=0;
for(int i=1;i<=t;i++)
{
sum+=pc[i];
int now=i&1;
for(int j=0;j<=sum;j++)
{
if(j<=pc[i]) dp[now][j]=(dp[now^1][j]+dp[now][j-1])%mod;
else dp[now][j]=(dp[now^1][j]+dp[now][j-1]-dp[now^1][j-1-pc[i]])%mod;
}
}
int ans=0;
for(int i=s;i<=b;i++)
ans=(ans+dp[t&1][i])%mod;
printf("%d\n",(ans+mod)%mod);
}
return 0;
}