POJ -- 3046、Ant Counting (多重集组合数,计数类dp)

题目vj链接

题面:
在这里插入图片描述
题意:
T T T 种物品,第 i i i 种物品有 n i n_i ni 个。

从中选出若干个物品组成一个集合,问集合大小位于区间 [ S , B ] [S,B] [S,B] 的不同的集合有多少个。

两个集合相同当且仅当两个集合相同种类的物品个数一样。

题解:
我们设 d p [ i ] [ j ] dp[i][j] dp[i][j] 为选择了前 i i i 种物品且集合大小为 j j j 时不同的方案数。

转移方程显然: d p [ i ] [ j ] = ∑ k = 0 m i n ( j , n i ) d p [ i − 1 ] [ j − k ] dp[i][j]=\sum\limits_{k=0}^{min(j,n_i)}dp[i-1][j-k] dp[i][j]=k=0min(j,ni)dp[i1][jk]

那么此题的时间复杂度为 O ( T ∗ ∑ n i ∗ m a x ( n i ) ) O(T*\sum n_i*max(n_i)) O(Tnimax(ni))

考虑化简 d p dp dp

j < = n i j<=n_i j<=ni d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][j]=dp[i-1][j]+dp[i][j-1] dp[i][j]=dp[i1][j]+dp[i][j1]

j > n i j>n_i j>ni d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] − d p [ i − 1 ] [ j − 1 − n i ] dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1-n_i] dp[i][j]=dp[i1][j]+dp[i][j1]dp[i1][j1ni]

时间复杂度 O ( T ∗ ∑ n i ) O(T*\sum n_i) O(Tni)

代码:
感觉数据没有出满。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<queue>
#include<bitset>
#include<map>
//#include<unordered_map>
//#include<unordered_set>
#include<set>
#include<ctime>
#define ui unsigned int
#define ll long long
#define llu unsigned ll
#define ld long double
#define pr make_pair
#define pb push_back
#define lc (cnt<<1)
#define rc (cnt<<1|1)
#define len(x)  (t[(x)].r-t[(x)].l+1)
#define tmid ((l+r)>>1)
#define fhead(x) for(int i=head[(x)];i;i=nt[i])
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)>(y)?(y):(x))
using namespace std;

const int inf=0x3f3f3f3f;
const ll lnf=0x3f3f3f3f3f3f3f3f;
const double dnf=1e18;
const double alpha=0.75;
const int mod=1000000;
const double eps=1e-8;
const double pi=acos(-1.0);
const int hp=13331;
const int maxn=100100;
const int maxm=100100;
const int maxp=100100;
const int up=1100;

int dp[2][maxn];
int pc[maxn];
int t,n,s,b;

int main(void)
{
    while(scanf("%d%d%d%d",&t,&n,&s,&b)!=EOF)
    {
        memset(pc,0,sizeof(pc));
        memset(dp,0,sizeof(dp));
        dp[0][0]=1;
        int x;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&x);
            pc[x]++;
        }
        int sum=0;
        for(int i=1;i<=t;i++)
        {
            sum+=pc[i];
            int now=i&1;
            for(int j=0;j<=sum;j++)
            {
                if(j<=pc[i]) dp[now][j]=(dp[now^1][j]+dp[now][j-1])%mod;
                else dp[now][j]=(dp[now^1][j]+dp[now][j-1]-dp[now^1][j-1-pc[i]])%mod;
            }
        }
        int ans=0;
        for(int i=s;i<=b;i++)
            ans=(ans+dp[t&1][i])%mod;

        printf("%d\n",(ans+mod)%mod);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值