针对车联网环境下网络攻击的入侵检测系统学习
期刊:Ad Hoc Networks,影响因子4.4
摘要
提出了一种新的入侵检测框架,专门针对位于车联网环境中的车辆上的网络攻击,如拒绝服务、分布式拒绝服务、分布式反射拒绝服务、暴力破解、僵尸网络和嗅探等。具体步骤:(i)使用Z-score归一化进行数据预处理,该归一化保留了所提出方法的数据分布并处理异常值;(ii)利用回归模型进行特征选择,简化模型复杂度,减少执行时间;(iii)模型选择和训练-随机森林,极端梯度增强,分类增强,轻梯度增强机-使用超参数优化来控制训练阶段的行为并防止过拟合。
主要贡献:
- 提出了一种新的基于机器学习的优化算法,该算法减少了检测各种恶意车联网攻击的执行时间,并且准确率很高。
- 建议使用回归模型进行特征选择,以评估这些特征的重要性,并去除非信息或冗余的预测因子。
- 讨论了不同过采样技术的使用,并为每个入侵数据集确定了最合适的过采样技术。
- 探讨了不同类型的超参数对每个数据集选择最佳模型参数的影响,并讨论了集成学习技术。
- 首次展示了过度拟合的高精度模型如何因未正确泛化而导致检测车联网网络攻击的问题,并提出了一种在检测车联网网络攻击时减少过拟合的方法。
- 执行时间和学习曲线以表明我们的模型可以很好地执行和推广不同的车联网网络攻击和新数据集
- 与近期的文献进行了比较,并展示了结合CIC-IDS-2017、CSE-CICIDS-2018 和 CIC-DDoS-2019 这三个入侵数据集提出的框架的有效性。我们表明,我们的模型非常适合,在大