一.问题:
现在有n个位数为d的x进制的数,把这些数进行排序。
如: 现有数组A:{1DF8,2F9,3012,A09},其元素均为16进制数,最大位数为4,一共4个元素。
二.思路:
以{52,135,132,250,150}为例,一位一位的排(从低位到高位)。最终顺序即为所求。
三.步骤:
1.开始算个位:
i | 0 | 1 | 2 | 3 | 4 |
Ai | 52 | 135 | 132 | 250 | 150 |
B1:统计上面5个数的个位数情况
j | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Bi | 2 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
B2:统计不大于j的元素个数
j | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
Bi | 2 | 2 | 4 | 4 | 4 | 5 | 5 | 5 | 5 | 5 |
C: 遍历A,检查其元素的个位,决定其位置,计数排序后的结果,作为临时结果
i | 0 | 1 | 2 | 3 | 4 |
Ai | 150 | 250 | 52 | 132 | 135 |
2.开始算十位:
c:
i | 0 | 1 | 2 | 3 | 4 |
Ai | 132 | 135 | 150 | 250 | 52 |
3.开始算百位:
c:
i | 0 | 1 | 2 | 3 | 4 |
Ai | 52 | 132 | 135 | 150 | 250 |
我们数组A中的元素都是由数组Z{0,1,2,3,5}内的元素构成。因此B1,B2的可以进行改进。
B1:
0 | 1 | 2 | 3 | 4 | 5 |
2 | 0 | 2 | 0 | 0 | 1 |
B2:
0 | 1 | 2 | 3 | 4 | 5 |
2 | 2 | 4 | 4 | 4 | 5 |
假设数组Z中最大最小元素的值:min=a,max=b。则需要将数字位减去a,然后再从B1,B2中找。
四.代码展示:
public class RadixSort {
static int numInDigit(int ai,int digit){
return (int) ((ai/Math.pow(10,digit)) % 10);
}
public static void main(String[] args) {
int[] a = {62,36,75,135,134,34,63,63,208};
radixSort(a);
System.out.println(Arrays.toString(a));
}
static void radixSort(int[] a){
int weishu = digits(a);
int[] count = new int[10];
int[] tmp = new int[a.length];
for(int i=0;i<weishu;i++){
for(int ai:a){
count[numInDigit(ai,i)]++;
}
for(int j=1;j<count.length;j++){
count[j]+=count[j-1];
}
for(int j=a.length-1;j>=0;j--){
tmp[count[numInDigit(a[j],i)]-1]=a[j];
count[numInDigit(a[j],i)]--;
}
//重新赋值
for(int j=0;j<a.length;j++){
a[j] = tmp[j];
}
count = new int[10];
}
}
static int digits(int[] a){
int digit = 0;
for(int ai:a){
int ailen = (ai+"").length();
if(ailen>digit){
digit = ailen;
}
}
return digit;
}
五.引理:
1.n个d位的k进制数,用radix-sort排序,若使用稳定排序方法(k不太大,推荐计数排序,耗时θ(n+k)),那么radix-sort将在θ(d(n+k))时间内排好他。
2.n个2进制数{1100...,101...,11...,1011...,1000...},最大位数为b,给定一个r(r<=b),那么
radix-sort将在θ((b/r)(n+2^r))内排好
i | 0 | 1 | 2 | 3 | 4 |
Ai | 52 | 135 | 132 | 250 | 150 |