8.3基数排序

一.问题:

    现在有n个位数为d的x进制的数,把这些数进行排序。

    如: 现有数组A:{1DF8,2F9,3012,A09},其元素均为16进制数,最大位数为4,一共4个元素。

二.思路:

    以{52,135,132,250,150}为例,一位一位的排(从低位到高位)。最终顺序即为所求。

三.步骤:

1.开始算个位:


A:
i01234
Ai52135132250150

B1:统计上面5个数的个位数情况


j0123456789
Bi2020010000

B2:统计不大于j的元素个数

j0123456789
Bi2244455555

C:  遍历A,检查其元素的个位,决定其位置,计数排序后的结果,作为临时结果

i01234
Ai15025052132135

2.开始算十位:
c:
i01234
Ai13213515025052

3.开始算百位:
c:
i01234
Ai52132135150250

我们数组A中的元素都是由数组Z{0,1,2,3,5}内的元素构成。因此B1,B2的可以进行改进。

B1:

012345
202001

B2:
012345
224445

假设数组Z中最大最小元素的值:min=a,max=b。则需要将数字位减去a,然后再从B1,B2中找。

    

四.代码展示:


public class RadixSort {
	
	
	static int numInDigit(int ai,int digit){
		
		return (int) ((ai/Math.pow(10,digit)) % 10);
	}
	
	public static void main(String[] args) {
		int[] a = {62,36,75,135,134,34,63,63,208};
		radixSort(a);
		System.out.println(Arrays.toString(a));
	}
	
	static void radixSort(int[] a){
		int weishu = digits(a);
		int[] count = new int[10];
		int[] tmp = new int[a.length];
		for(int i=0;i<weishu;i++){
			for(int ai:a){
				count[numInDigit(ai,i)]++;
			}
			for(int j=1;j<count.length;j++){
				count[j]+=count[j-1];
			}
			for(int j=a.length-1;j>=0;j--){
				tmp[count[numInDigit(a[j],i)]-1]=a[j];
				count[numInDigit(a[j],i)]--;
			}
			//重新赋值
			for(int j=0;j<a.length;j++){
				a[j] = tmp[j];
			}
			count = new int[10];
		}
		
	}

	static int digits(int[] a){
		
		int digit = 0;
		for(int ai:a){
			int ailen = (ai+"").length();
			if(ailen>digit){
				digit = ailen;
			}
		}
		return digit;
		
	}

五.引理:

1.n个d位的k进制数,用radix-sort排序,若使用稳定排序方法(k不太大,推荐计数排序,耗时θ(n+k)),那么radix-sort将在θ(d(n+k))时间内排好他。

2.n个2进制数{1100...,101...,11...,1011...,1000...},最大位数为b,给定一个r(r<=b),那么

radix-sort将在θ((b/r)(n+2^r))内排好

i01234
Ai52135132250150

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值