conda常用命令:安装,更新,创建,激活,关闭,查看,卸载,删除,清理,重命名,换源,问题

安装

linux环境

bash Anaconda3-2019.07-Linux-x86_64.sh
#yes+回车 
#然后重启terminal

window环境:直接双击安装exe文件,然后根据安装向导进行安装

升级

升级Anaconda需要先升级conda

conda update conda          #基本升级
conda update anaconda       #大的升级
conda update anaconda-navigator    //update最新版本的anaconda-navigator   

卸载Anaconda软件

由于Anaconda的安装文件都包含在一个目录中,所以直接将该目录删除即可。删除整个Anaconda目录:

计算机控制面板->程序与应用->卸载 //windows

或者

找到C:\ProgramData\Anaconda3\Uninstall-Anaconda3.exe执行卸载

rm -rf anaconda    //ubuntu

最后,建议清理下.bashrc中的Anaconda路径。

conda环境使用基本命令

conda update -n base conda        #update最新版本的conda
conda create -n xxxx python=3.5   #创建python3.5的xxxx虚拟环境
conda activate xxxx               #开启xxxx环境
conda deactivate                  #关闭环境
conda env list                    #显示所有的虚拟环境
conda info --envs                 #显示所有的虚拟环境

查看指定包可安装版本信息命令

参考:https://blog.csdn.net/qq_35203425/article/details/79965389
查看tensorflow各个版本:(查看会发现有一大堆TensorFlow源,但是不能随便选,选择可以用查找命令定位)

anaconda search -t conda tensorflow  

查看指定包可安装版本信息命令

anaconda show <USER/PACKAGE>  

查看指定anaconda/tensorflow版本信息

anaconda show tensorflow

输出结果会提供一个下载地址,使用下面命令就可指定安装1.8.0版本tensorflow

conda install --channel https://conda.anaconda.org/anaconda tensorflow=1.8.0 

更新,卸载安装包:

conda list         #查看已经安装的文件包
conda list  -n xxx       #指定查看xxx虚拟环境下安装的package
conda update xxx   #更新xxx文件包
conda uninstall xxx   #卸载xxx文件包

删除虚拟环境

conda remove -n xxxx --all   //创建xxxx虚拟环境

清理(conda瘦身)

conda clean就可以轻松搞定!第一步:通过conda clean -p来删除一些没用的包,这个命令会检查哪些包没有在包缓存中被硬依赖到其他地方,并删除它们。第二步:通过conda clean -t可以将删除conda保存下来的tar包。

conda clean -p      //删除没有用的包
conda clean -t      //删除tar包
conda clean -y --all //删除所有的安装包及cache

参考:https://blog.csdn.net/menc15/article/details/71477949

重命名env

Conda是没有重命名环境的功能的, 要实现这个基本需求, 只能通过愚蠢的克隆-删除的过程。
切记不要直接mv移动环境的文件夹来重命名, 会导致一系列无法想象的错误的发生!

conda create --name newname --clone oldname      //克隆环境
conda remove --name oldname --all      //彻底删除旧环境

conda自动开启/关闭激活

参考:https://www.cnblogs.com/clemente/p/11231539.html

conda activate   #默认激活base环境
conda activate xxx  #激活xxx环境
conda deactivate #关闭当前环境
conda config --set auto_activate_base false  #关闭自动激活状态
conda config --set auto_activate_base true  #关闭自动激活状态

Conda 安装本地包

有时conda或pip源下载速度太慢,install a过程中会中断连接导致压缩包下载不全,
此时,我们可以用浏览器等工具先下载指定包再用conda或pip进行本地安装

#pip 安装本地包
pip install   ~/Downloads/a.whl
#conda 安装本地包
conda install --use-local  ~/Downloads/a.tar.bz2

解决conda install 下载速度慢

参考:https://zhuanlan.zhihu.com/p/62899936

#例如, 添加清华anaconda镜像:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
#本人的 ~/.condarc
auto_activate_base: false
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
show_channel_urls: true

pip和conda批量导出、安装组件(requirements.txt)

参考

常用软件安装

参考:conda环境下常用软件安装

问题

1:failed ERROR conda.core.link:_execute(502):

conda install 软件时出现如下错误信息:
Preparing transaction: done
Verifying transaction: done
Executing transaction: 
failed ERROR conda.core.link:_execute(502):

解决方法:往往时权限不够,需要以管理员方式运行Anaconda prompt进行安装

2.anaconda或conda不是内部命令

解决方法:https://zhuanlan.zhihu.com/p/32446675
在这里插入图片描述
添加上图环境变量即可

jupyter notebook默认工作目录设置
参考:https://blog.csdn.net/liwei1205/article/details/78818568

1)在Anaconda Prompt终端中输入下面命令,查看你的notebook配置文件在哪里:

jupyter notebook --generate-config
#会生成文件C:\Users\用户\.jupyter\jupyter_notebook_config.py

2)打开jupyter_notebook_config.py文件通过搜索关键词:c.NotebookApp.notebook_dir,修改如下

c.NotebookApp.notebook_dir = 'E:\\tf_models'     //修改到自定义文件夹

3)然后重启notebook服务器就可以了

**注:**其它方法直接命令到指定目录,Anaconda Prompt终端中输:jupyter notebook 目录地址

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页