前言
要考高级数理逻辑了,和舍友整理了一波去年高级数理逻辑的答案,可能有错误。仅供参考,被坑了,概不负责。嘿嘿嘿。参考了王元元的《现代逻辑学》,李文生老师的PPT,和BigPan老师的讲义,北邮科技酒店的往年试题集合。
修改
- 修改了简答题第一题中的问题,有朋友指出 ¬ □ ¬ A → ◊ A \neg \Box \neg A \rightarrow \Diamond A ¬□¬A→◊A是不成立的。因为命题A的可达世界可能不存在。关于必然和可能以及可达世界的问题。我在这篇博客里面稍微讲了一下。可以参考一下可能与必然
- 有朋友指出去年的题目的图和试卷29页的图以及老师讲义上面的图不一样。因此答案不能直接抄。所以这里写一下这道大题的流程。
![]() |
![]() |
一.简答题
1.原来的归结过程如下, 是 有 问 题 的 \color{red}是有问题的 是有问题的。
C ∗ = ¬ ( ◊ A → ◊ B ) ∗ ∧ ( ◊ ( A → B ) ) ∗ = ¬ ( ¬ ( ◊ A ) ∗ ∧ ( ◊ B ) ∗ ) ) ∧ □ ( A → B ) ∗ = ¬ ( ¬ □ A ∗ ∧ □ B ∗ ) ∧ □ ( ¬ A ∗ ∧ B ∗ ) = ( □ A ∗ ∨ ¬ □ B ∗ ) ∧ □ ¬ ( A ∗ ∨ ¬ B ∗ ) ¬ C ∗ = ¬ ( □ A ∗ ∨ ¬ □ B ∗ ) ∨ ¬ □ ¬ ( A ∗ ∨ ¬ B ∗ ) = ¬ ( □ A ∗ ∨ ¬ □ B ∗ ) ∨ ◊ ( A ∗ ∨ ¬ B ∗ ) = ¬ ( □ B ∗ → □ A ∗ ) ∨ ◊ ( B ∗ → A ∗ ) = ( □ B ∗ → □ A ∗ ) → ◊ ( B ∗ → A ∗ ) \begin{aligned} C^* &= \neg(\Diamond A \rightarrow \Diamond B)^* \land (\Diamond(A \rightarrow B))^* \\ &= \neg(\neg(\Diamond A)^* \land (\Diamond B)^*)) \land \Box(A \rightarrow B)^* \\ &= \neg(\neg \Box A^* \land \Box B^*) \land \Box(\neg A^* \land B^*) \\ &= (\Box A^* \lor \neg \Box B^*) \land \Box \neg(A^* \lor \neg B^*) \\ \neg C^* &= \neg (\Box A^* \lor \neg \Box B^*) \lor \neg \Box \neg(A^* \lor \neg B^*) \\ &= \neg (\Box A^* \lor \neg \Box B^*) \lor \Diamond(A^* \lor \neg B^*) \\ &= \neg(\Box B^* \rightarrow \Box A^*) \lor \Diamond(B^* \rightarrow A^*) \\ &= (\Box B^* \rightarrow \Box A^*) \rightarrow \Diamond(B^* \rightarrow A^*) \end{aligned} C∗¬C∗=¬(◊A→◊B)∗∧(◊(A→B))∗=¬(¬(◊A)∗∧(◊B)∗))∧□(A→B)∗=¬(¬□A∗∧□B∗)∧□(¬A∗∧B∗)=(□A∗∨¬□B∗)∧□¬(A∗∨¬B∗)=¬(□A∗∨¬□B∗)∨¬□¬(A∗∨¬B∗)=¬(□A∗∨¬□B∗)∨◊(A∗∨¬B∗)=¬(□B∗→□A∗)∨◊(B∗→A∗)=(□B∗→□A∗)→◊(B∗→A∗)
其中 ¬ C ∗ \neg C^* ¬C∗第一步是不成立的,如前所说 ¬ □ ¬ A → ◊ A \neg \Box \neg A \rightarrow \Diamond A ¬□¬A→◊A不成立。所以修改之后的答案是这样的。
C = ( ◊ A → ◊ B ) → ◊ ( A → B ) C ∗ = ¬ ( ◊ A → ◊ B ) ∗ ∧ ( ◊ ( A → B ) ) ∗ = ¬ ( ¬ ( ◊ A ) ∗ ∧ ( ◊ B ) ∗ ) ∧ □ ( A → B ) ∗ = ¬ ( ¬ □ A ∗ ∧ □ B ∗ ) ∧ □ ( ¬ A ∗ ∧ B ∗ ) = ( □ A ∗ ∨ ¬ □ B ∗ ) ∧ □ ¬ ( A ∗ ∨ ¬ B ∗ ) ¬ C ∗ = ¬ ( □ A ∗ ∨ ¬ □ B ∗ ) ∨ ¬ □ ( ¬ A ∗ ∧ B ∗ ) = ¬ ( □ B ∗ → □ A ∗ ) ∨ ¬ □ ( ¬ A ∗ ∧ B ∗ ) = ( □ B ∗ → □ A ∗ ) → ¬ □ ( ¬ A ∗ ∧ B ∗ ) \begin{aligned} C &= (\Diamond A \rightarrow \Diamond B) \rightarrow \Diamond (A\rightarrow B) \\ \\ C^* &= \neg(\Diamond A \rightarrow \Diamond B)^* \land (\Diamond(A \rightarrow B))^* \\ &= \neg(\neg (\Diamond A)^*\land(\Diamond B)^*)\land \Box(A \rightarrow B)^* \\ &= \neg(\neg \Box A^* \land \Box B^*) \land \Box(\neg A^* \land B^*) \\ &= (\Box A^* \lor \neg \Box B^*) \land \Box\neg(A^* \lor \neg B^*) \\ \\ \neg C^* &= \neg(\Box A^* \lor \neg \Box B^*) \lor \neg\Box(\neg A^* \land B^*) \\ &= \neg(\Box B^* \rightarrow \Box A^*) \lor \neg\Box(\neg A^* \land B^*) \\ &= (\Box B^* \rightarrow \Box A^*) \rightarrow \neg\Box(\neg A^* \land B^*) \end{aligned} CC∗¬C∗=(◊A→◊B)→◊(A→B)=¬(◊A→◊B)∗∧(◊(A→B))∗=¬(¬(◊A)∗∧(◊B)∗)∧□(A→B)∗=¬(¬□A∗∧□B∗)∧□(¬A∗∧B∗)=(□A∗∨¬□B∗)∧□¬(A∗∨¬B∗)=¬(□A∗∨¬□B∗)∨¬□(¬A∗∧B∗)=¬(□B∗→□A∗)∨¬□(¬A∗∧B∗)=(□B∗→□A∗)→¬□(¬A∗∧B∗)
2.FS 合理性(soundness):称形式系统 FS 是合理的,FS 的任意公式 A 有:├FS A ,则|=M A , M 为所有结构; FS 完备性(Completeness):称形式系统 FS 是完备的,如果对 FS 的任意公式 A 有:若|=M A ,则├FS A ,这里 M 为 FS 所讨论的一类结构;
3.常元:常元表示个体域中的一个确定个体。如:5,Zhang San 等。 变元:变元可以用来表示个体域上的任意个体,是不确定的。 自由变元:自由变元是真正的变元,可以将个体域中的任意个体代入到自由变元中。类似于 数学中的变元。 约束变元:约束变元并不是实际意义的变元(数学意义上的变元)。约束变元是为表达某种 想的辅助符号。 自由变元与约束变元的对比:
自由变元 约束变元
可代入 不可代入
不可改名 可改名
4.形式系统 FS 称为可判定的,如果存在一个算法,对 FS 对的任一公式 A,可确定├A 是否成立,否则称 FS 是可判定的;如果上述算法对定理能作出判断, 而对于非定理未必终止(作判断),称 FS 为半可判定的;
- FS 为可判定的,当且仅当定理集合为递归集;
5.Herbrand 定理:子句集 S 为不可满足的,当且仅当 S 的基例的有穷集合是不可满足的。
证明: 假设 S 的有限个基例为 S1 ,S2 …Sn 。
1、 当有限个基例不可满足,则 S 为不可满足的 S├S1 ∧S2 ∧…∧Sn 因此,如果{ S1 , S2 ,…,Sn}为不可满足的,则 S 一定不可满足。
2、 当 S 为不可满足时,有限基例为不可满足的。 l 反证法:假设 S 不可满足,但是有限基例都为可满足的。 l 则根据紧致性,有所有的基例集合是可满足的。 l 需要语义树的定理来证明,我们略。
二.判断题
1 F
◊ ( A → ( B → A ) ) \Diamond (A \rightarrow (B\rightarrow A)) ◊(A→(B→A))不是永真式, □ ( A → ( B → A ) ) \Box (A \rightarrow (B\rightarrow A)) □(A→(B→A))才是, 因为这个公式的可能世界可能不存在。参考试卷第1页第8题和第29页第9题
2 F
见试卷第1页第4题,x可能不是A中的自由变元
3 F
见现代逻辑学152页,假如A没有可能世界,就可以同时满足
4 T
在命题逻辑中,对不可满足的子句集S,归结原理是完备的,即:若子句集不可满足,则必然存在一个从S到空子句的归结演绎;若存在一个从S到空子句的归结演绎,则S一定是不可满足的。但是,对于可满足的子句集S,用归结原理得不到任何结果。
5 F
满足传递性 ↔ ◊ ◊ A → ◊ A \leftrightarrow \Diamond \Diamond A \rightarrow \Diamond A ↔◊◊A→◊A成立。见试卷第9页。可以举个反例,例如, w 1 w_1 w1可达世界 w 2 w_2 w2,而 w 2 w_2 w2可达世界 w 3 w_3 w3,假设A在 w 3 w_3 w3成立,而在 w 2 w_2 w2不成立
6 T
见试卷19页8题
7 T
见试卷第9页第9题
8 F
可能 ∑ \sum ∑本身就是错的
9 T
根据BigPan说的,感觉是错的,就是对的,哈哈哈,瞎猜的
10 F
符号还要求是可数集合,见老师讲义01,2.2.3
三. 选择题
1.AD(B?)
等价性代表自反,对称,传递。而自反可以推导出连续。对称+传递->欧几里得性质。所以B正确(欧几里得表达式,但是试卷1页1题中却没有选择它)。而D和连续性等价。所以正确。A与传递性有关(见试卷9页第5题)。
2.C
A中可能世界可能不存在,比如从w1开始。B由于不满足连续性,比如w3,就不成立。D同理
C可能不对。自反+传递为偏序,见现代逻辑学149
3.BD
P 1 ( x ) P_1(x) P1(x)中的x是约束变元, P 2 ( x ) P_2(x) P2(x)中的x是自由变元。 p 3 ( y ) p_3(y) p3(y)中的y是约束变元, P 4 ( z ) P_4(z) P4(z)中的z是自由变元
4.BCD
见讲义4.6,一阶谓词逻辑是半判定的。
5.D
对于A,除非x1是无穷小。B中后继不可能比前面的小。C中变元v不确定。
四.证明计算题
-
见试卷29页证明题第2题
-
没有时间解释原理了,快,上车。
![]() |
求A到Z的程序
- 这里目标是Z,表达为 ← G o ( z ) \leftarrow Go(z) ←Go(z)
- 出发点是A,表达为 G o ( A ) ← Go(A) \leftarrow Go(A)←。
- 我们可以看到 A → B → E → Y → Z A \rightarrow B \rightarrow E \rightarrow Y \rightarrow Z A→B→E→Y→Z是一条可达路径。我们把这些可达关系表示一下,出发点在右边,终点在左边。得到以下子句, G o ( B ) ← G o ( A ) Go(B) \leftarrow Go(A) Go(B)←Go(A), G o ( E ) ← G o ( B ) Go(E) \leftarrow Go(B) Go(E)←Go(B), G o ( Y ) ← G o ( E ) Go(Y) \leftarrow Go(E) Go(Y)←Go(E), G o ( Z ) ← G o ( Y ) Go(Z) \leftarrow Go(Y) Go(Z)←Go(Y)。
- 好了,接下来我们把子句整理一下。进行归结。所谓归结就是把在 ← \leftarrow ←左右两边相同的部分消掉。例如 G o ( Z ) ← G o ( Y ) Go(Z) \leftarrow Go(Y) Go(Z)←Go(Y)和 ← G o ( Z ) \leftarrow Go(Z) ←Go(Z)就可以得到 ← G o ( Y ) \leftarrow Go(Y) ←Go(Y)。若左右两边相同,则得到空子句 □ \Box □。
←
G
o
(
z
)
1
G
o
(
A
)
←
2
G
o
(
B
)
←
G
o
(
A
)
3
G
o
(
E
)
←
G
o
(
B
)
4
G
o
(
Y
)
←
G
o
(
E
)
5
G
o
(
Z
)
←
G
o
(
Y
)
6
←
G
o
(
Y
)
(
1
,
6
)
7
←
G
o
(
E
)
(
5
,
7
)
8
←
G
o
(
B
)
(
4
,
8
)
9
←
G
o
(
A
)
(
3
,
9
)
10
□
(
2
,
10
)
\begin{aligned} \leftarrow Go(z) && 1\\ Go(A) \leftarrow && 2\\ Go(B) \leftarrow Go(A) && 3 \\ Go(E) \leftarrow Go(B) && 4 \\ Go(Y) \leftarrow Go(E) && 5 \\ Go(Z) \leftarrow Go(Y) && 6 \\ \leftarrow Go(Y) && (1,6) 7 \\ \leftarrow Go(E) && (5,7) 8\\ \leftarrow Go(B) &&(4,8) 9 \\ \leftarrow Go(A) &&(3,9)10 \\ \Box(2,10) \end{aligned}
←Go(z)Go(A)←Go(B)←Go(A)Go(E)←Go(B)Go(Y)←Go(E)Go(Z)←Go(Y)←Go(Y)←Go(E)←Go(B)←Go(A)□(2,10)123456(1,6)7(5,7)8(4,8)9(3,9)10
3. 见李文生PPT中43页
-
不会,放弃
-
见试卷29证明题第3题
五.参考资料下载链接
为了满足大家打印的需求,把我用到的资料都放在这里。
![]() |
链接:https://pan.baidu.com/s/1si357WPM4eg1JCWYvRYECQ
提取码:3jxv