Hadoop之WC

说明

wc作为hadoop中经典的程序,是入门必须理解的程序之一。话不多说,直接见源码

Mapper

package com.gugu.mr.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * KEYIN :是map task读取到的数据的key的类型,是一行的起始偏移量Long
 * VALUEIN:是map task读取到的数据的value的类型,是一行的内容String
 *
 * KEYOUT:是用户的自定义map方法要返回的结果kv数据的key的类型,在wordcount逻辑中,我们需要返回的是单词String
 * VALUEOUT:是用户的自定义map方法要返回的结果kv数据的value的类型,在wordcount逻辑中,我们需要返回的是整数Integer
 *
 *
 * 但是,在mapreduce中,map产生的数据需要传输给reduce,需要进行序列化和反序列化,而jdk中的原生序列化机制产生的数据量比较冗余,就会导致数据在mapreduce运行过程中传输效率低下
 * 所以,hadoop专门设计了自己的序列化机制,那么,mapreduce中传输的数据类型就必须实现hadoop自己的序列化接口
 *
 * hadoop为jdk中的常用基本类型Long String Integer Float等数据类型封住了自己的实现了hadoop序列化接口的类型:LongWritable,Text,IntWritable,FloatWritable
 *
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String line = value.toString();
        String[] words = line.split(" ");
        for (String word:words) {
            context.write(new Text(word), new IntWritable(1));
        }
    }
}

reduce

package com.gugu.mr.wc;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.Iterator;

/**
 * @author gugu
 * @Classname WordCountReduce
 * @Description TODO
 * @Date 2019/11/26 18:59
 */
public class WordCountReduce extends Reducer<Text, IntWritable, Text,IntWritable> {
    @Override
    protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
        Iterator<IntWritable> iterator = values.iterator();
        int sum = 0;
        while (iterator.hasNext()){
            sum+= iterator.next().get();
        }
        context.write(key, new IntWritable(sum));
    }
}

job

package com.gugu.mr.wc;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.net.URI;

/**
 * 用于提交mapreduce job的客户端程序
 * 功能:
 *   1、封装本次job运行时所需要的必要参数
 *   2、跟yarn进行交互,将mapreduce程序成功的启动、运行
 * @author gugu
 * @Classname JobSubmit
 * @Description TODO
 * @Date 2019/11/26 19:12
 */
public class JobSubmit {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        // 在代码中设置JVM系统参数,用于给job对象来获取访问HDFS的用户身份
        System.setProperty("HADOOP_USER_NAME", "gugu");
        // 1、设置job运行时要访问的默认文件系统
        conf.set("fs.defaultFS","hdfs://master:9000");
        // 2、设置job提交到哪去运行[默认local、yarn指定集群]
        conf.set("mapreduce.framework.name", "yarn");
//        conf.set("yarn.resourcemanager.hostname", "master");
        // 3、如果要从windows系统上运行这个job提交客户端程序,则需要加这个跨平台提交的参数
        conf.set("mapreduce.app-submission.cross-platform","true");

        Job job = Job.getInstance(conf);

        // 2、封装参数: 本次job所要调用的Mapper实现类、Reducer实现类
        job.setMapperClass(WordCountMapper.class);
        job.setReducerClass(WordCountReduce.class);

        // 3、封装参数:本次job的Mapper实现类、Reducer实现类产生的结果数据的key、value类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        job.setJar("D:\\ApplicationFiles\\IDEA\\hadoopTest\\myhadoop\\target\\hadoopTest.jar");
//        job.setJarByClass(JobSubmit.class);
        Path output = new Path("/wc/output");
        FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"),conf,"gugu");
        if(fs.exists(output)){
            fs.delete(output, true);
        }

        // 4、封装参数:本次job要处理的输入数据集所在路径、最终结果的输出路径
        FileInputFormat.setInputPaths(job, new Path("/wc/input"));
        FileOutputFormat.setOutputPath(job, output);  // 注意:输出路径必须不存在

        // 5、封装参数:想要启动的reduce task的数量
        job.setNumReduceTasks(2);

        // 6、提交job给yarn
        boolean res = job.waitForCompletion(true);

        System.exit(res?0:-1);
    }
}

运行结果

执行后台输出
查看
hdfs输出
如果有疑问可以沟通交流,求抱大佬大腿,哈哈哈

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值