说明
wc作为hadoop中经典的程序,是入门必须理解的程序之一。话不多说,直接见源码
Mapper
package com.gugu.mr.wc;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
/**
* KEYIN :是map task读取到的数据的key的类型,是一行的起始偏移量Long
* VALUEIN:是map task读取到的数据的value的类型,是一行的内容String
*
* KEYOUT:是用户的自定义map方法要返回的结果kv数据的key的类型,在wordcount逻辑中,我们需要返回的是单词String
* VALUEOUT:是用户的自定义map方法要返回的结果kv数据的value的类型,在wordcount逻辑中,我们需要返回的是整数Integer
*
*
* 但是,在mapreduce中,map产生的数据需要传输给reduce,需要进行序列化和反序列化,而jdk中的原生序列化机制产生的数据量比较冗余,就会导致数据在mapreduce运行过程中传输效率低下
* 所以,hadoop专门设计了自己的序列化机制,那么,mapreduce中传输的数据类型就必须实现hadoop自己的序列化接口
*
* hadoop为jdk中的常用基本类型Long String Integer Float等数据类型封住了自己的实现了hadoop序列化接口的类型:LongWritable,Text,IntWritable,FloatWritable
*
*/
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
String[] words = line.split(" ");
for (String word:words) {
context.write(new Text(word), new IntWritable(1));
}
}
}
reduce
package com.gugu.mr.wc;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
import java.util.Iterator;
/**
* @author gugu
* @Classname WordCountReduce
* @Description TODO
* @Date 2019/11/26 18:59
*/
public class WordCountReduce extends Reducer<Text, IntWritable, Text,IntWritable> {
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
Iterator<IntWritable> iterator = values.iterator();
int sum = 0;
while (iterator.hasNext()){
sum+= iterator.next().get();
}
context.write(key, new IntWritable(sum));
}
}
job
package com.gugu.mr.wc;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.net.URI;
/**
* 用于提交mapreduce job的客户端程序
* 功能:
* 1、封装本次job运行时所需要的必要参数
* 2、跟yarn进行交互,将mapreduce程序成功的启动、运行
* @author gugu
* @Classname JobSubmit
* @Description TODO
* @Date 2019/11/26 19:12
*/
public class JobSubmit {
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
// 在代码中设置JVM系统参数,用于给job对象来获取访问HDFS的用户身份
System.setProperty("HADOOP_USER_NAME", "gugu");
// 1、设置job运行时要访问的默认文件系统
conf.set("fs.defaultFS","hdfs://master:9000");
// 2、设置job提交到哪去运行[默认local、yarn指定集群]
conf.set("mapreduce.framework.name", "yarn");
// conf.set("yarn.resourcemanager.hostname", "master");
// 3、如果要从windows系统上运行这个job提交客户端程序,则需要加这个跨平台提交的参数
conf.set("mapreduce.app-submission.cross-platform","true");
Job job = Job.getInstance(conf);
// 2、封装参数: 本次job所要调用的Mapper实现类、Reducer实现类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReduce.class);
// 3、封装参数:本次job的Mapper实现类、Reducer实现类产生的结果数据的key、value类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
job.setJar("D:\\ApplicationFiles\\IDEA\\hadoopTest\\myhadoop\\target\\hadoopTest.jar");
// job.setJarByClass(JobSubmit.class);
Path output = new Path("/wc/output");
FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"),conf,"gugu");
if(fs.exists(output)){
fs.delete(output, true);
}
// 4、封装参数:本次job要处理的输入数据集所在路径、最终结果的输出路径
FileInputFormat.setInputPaths(job, new Path("/wc/input"));
FileOutputFormat.setOutputPath(job, output); // 注意:输出路径必须不存在
// 5、封装参数:想要启动的reduce task的数量
job.setNumReduceTasks(2);
// 6、提交job给yarn
boolean res = job.waitForCompletion(true);
System.exit(res?0:-1);
}
}
运行结果
查看
如果有疑问可以沟通交流,求抱大佬大腿,哈哈哈