- Agent 的组成
- Agent 被定义为 Agent = 大语言模型(LLM)+ 观察 + 思考 + 行动 + 记忆。其中 LLM 作为“大脑”处理信息、学习、决策和执行行动;观察是感知机制;思考是内部决策过程;行动是对思考和观察的响应;记忆用于存储经验以调整未来行动。
- Agent1_分析器
- 其设计目的是对题目进行分析并给出可能的结果。在温度转换问题中,它作为逻辑推理专家,按照以下步骤进行分析:
- 首先理解摄氏度转华氏度的公式 。
- 然后将具体的摄氏度数值 代入公式。
- 接着计算 。
- 再简化计算,先算出 ,然后 。
- 最后根据计算结果选择正确选项,得出当摄氏度为 5 度时,华氏度是 41.0,正确答案是 C。
- 以下是用 Python 代码实现这个温度转换计算的示例:
def celsius_to_fahrenheit(celsius):
fahrenheit = celsius * 9/5 + 32
return fahrenheit
celsius = 5
fahrenheit_result = celsius_to_fahrenheit(celsius)
print(f"当摄氏度为{ celsius }度时,对应的华氏度是{ fahrenheit_result }")
- Agent2_评分器
- 它的作用是对答案的合理性排序,给出可能性最大的答案。同样在温