关于 Agent 设计思路与应用的学习报告#Datawhale#AI夏令营

  1. Agent 的组成
    • Agent 被定义为 Agent = 大语言模型(LLM)+ 观察 + 思考 + 行动 + 记忆。其中 LLM 作为“大脑”处理信息、学习、决策和执行行动;观察是感知机制;思考是内部决策过程;行动是对思考和观察的响应;记忆用于存储经验以调整未来行动。
  2. Agent1_分析器
    • 其设计目的是对题目进行分析并给出可能的结果。在温度转换问题中,它作为逻辑推理专家,按照以下步骤进行分析:
      • 首先理解摄氏度转华氏度的公式 。
      • 然后将具体的摄氏度数值 代入公式。
      • 接着计算 。
      • 再简化计算,先算出 ,然后 。
      • 最后根据计算结果选择正确选项,得出当摄氏度为 5 度时,华氏度是 41.0,正确答案是 C。
    • 以下是用 Python 代码实现这个温度转换计算的示例:

def celsius_to_fahrenheit(celsius):
    fahrenheit = celsius * 9/5 + 32
    return fahrenheit

celsius = 5
fahrenheit_result = celsius_to_fahrenheit(celsius)
print(f"当摄氏度为{ celsius }度时,对应的华氏度是{ fahrenheit_result }")

  1. Agent2_评分器
    • 它的作用是对答案的合理性排序,给出可能性最大的答案。同样在温
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值