DP 矩阵连乘问题

最优二叉查找树的一道思考习题

同最优二叉查找树一样,矩阵连乘问题也是一个卡特兰数问题(其动态规划的构造过程都很像)






----------------------------------------------------------------------------------------------------------------------------------------------------


分析解答:


a,铺垫的数学知识


首先要搞清楚矩阵相乘是怎么乘的:

1)对于连续的n个矩阵相乘 A1 * A2 *A3.........An,其乘法顺序可以是任意的,可以在上面加括号,改变做乘法的顺序,例如 A*B*C三个矩阵相乘可以A*(B*C)

也可以直接按从左到右的顺序。连续的两个矩阵的位数必须满足m*p,p*n才能相乘,且相乘后的结果是个m*n的矩阵。(线性代数的知识)

2)对于2个m*p,p*n的矩阵相乘,共做乘法次数为 m*n*p 次。

这是预备知识,知道矩阵连续的乘法的运算次数跟运算顺序有关后,就很容易举出例子了,略。



b,卡特兰数个,证明很麻烦,有时间看了组合数学再来看


------------------------------------------------------------------------------------------------------------------------


c,重点是要解决这个问题。


M[i , j]表示从第 i 个矩阵到第 j 个矩阵连乘的最少乘法次数,(i 从 0 编号),我们最终的目标是求 M[0 , n-1]。

Ai *.......Ak * Ak+1.....Aj

假设要得到这个式子的值(即从矩阵 i 连乘到矩阵 j),所作的最后一个矩阵乘法是在 矩阵 k 后(注意准确的描述位置)断开的(即左右都已乘运算好),那么容易得到

其递推式:

M[i , j]  =  min{ M[i , k] + M[k+1 , j]  + di * dk+1 * dj+1}         i   <=   k   <=   j-1

其中 di 是矩阵 Ai 的第一维,dk+1是断开处矩阵 Ak 的第二维(即Ak+1的第一维,是一样的),dj+1是最后一个矩阵 Aj 的第二维。

得到这个式子也是一个 逆向思维的过程。

-------------------------------------------------------------------------------

可以用矩阵连乘的动态规划构造过程与最优二叉查找树比较下,发现其构造非常相似(在前面一篇dp之什么叫做professional中提到过,不再详述)

实现:

初始条件:M[i , i] = 0

填表顺序:鉴于其递推式与最优二叉查找树相似,填表顺序也是按对角线的,自己画画就知道了。

代码也跟最优二叉查找树的控制逻辑相似:


复制代码
  
  
package Section8; /* 第八章 动态规划 课后习题:矩阵连乘 */ public class MatEven { /** * @param args */ public static void main(String[] args) { // TODO Auto-generated method stub int [] Dim = { 30 , 35 , 35 , 15 , 15 , 5 , 5 , 10 , 10 , 20 , 20 , 25 }; int result = MatEven(Dim); System.out.println( " \n动态规划求的的最优策略相乘顺序导致的最少乘法数为: " + result); } public static int MatEven( int [] Dim){ // 接受n个矩阵的维度数组Dim大小为2n int n = Dim.length / 2 ; // 有n个矩阵,编号0...n-1,编号为k的矩阵的维数是Dim[2k] * Dim[2k+1] int [][] Result = new int [n][n]; // 最小代价矩阵 // 初始化 for ( int i = 0 ;i < n;i ++ ) Result[i][i] = 0 ; // 沿对角线填矩阵 for ( int d = 1 ;d <= n - 1 ;d ++ ) // 共n-1条对角线需要填 { for ( int i = 0 ;i <= n - d - 1 ;i ++ ) // 第d条对角线的第一个点横坐标为d { // int j = i - d; int j = i + d; // 在第d条对角线上的点,横纵坐标的关系是j = i + d // 这样就确定了一个位置(i,j)的坐标,然后来填(i,j) int Min = 1000000000 ; for ( int k = i;k <= j - 1 ;k ++ ) // 从第k个矩阵后面断开 { // 动态规划状态转移方程 int temp = Result[i][k] + Result[k + 1 ][j] + (Dim[ 2 * i] * Dim[ 2 * k + 1 ] * Dim[ 2 * j + 1 ]); if ( temp < Min) Min = temp; } Result[i][j] = Min; } } return Result[ 0 ][n - 1 ]; } }
复制代码


上面用一个数组接受一个连乘的矩阵的维数,

例如连乘的矩阵维数是:30*35  35*15  15*5  5*10  10*20  20*25

用动态规划求解得到的最佳乘法次数是:


动态规划求的的最优策略相乘顺序导致的最少乘法数为:15125

直接返回矩阵的话就可以得到整个M[i , j]的值

如果按照从左到右的顺序做乘法,是远远不止这个次数的。


-------------------------------------------------------------------------

当然,再做一些处理,就还可以得到具体的次序,类似于最优二叉查找树,就是要记录动态规划产生的过程,略

----------------------------------------------------------------------------------------------


总结:


矩阵连乘问题是个卡特兰数问题

其动态规划的构造过程非常类似于最优二叉查找树

矩阵连乘的最有子结构是什么?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值