- 2阶实对称矩阵特性
定理:2阶实对称矩阵H的特征值是实数
H=[a,b;b,c]
a,b,c是实数,λ 是特征值
A=[a-λ,b;b,c-λ]
特征值求解方法为:(a- λ )(c- λ)
- b2
= 0
求解方程得到两个根为:
λ=(a+c)±(a+c)2-4(ac-b2)2
(a+c)2-4ac-b2=a-c2+4b2≥0
所以,在a、b、c为实数时,特征值也是实数。
2、特征向量
根据特征值和特征向量的定义:HX=λX,(H-λE)X = 0;因此方程若有解,则
det(H-λE)=0;
设
A=[a-λ,b;b,c-λ]
则有-b/(a-λ) = (c-λ)/b, 线性齐次方程组AX=0有非零解,其中之一解向量 [1,-b/(a-λ)],归一化后得到标准解。