条款18:分期摊还期望的计算
在条款17中,我极力称赞懒惰的优点,尽可能地拖延时间,并且我解释说懒惰如何提高程序的运行效率。在这个条款里我将采用一种不同的态度。这里将不存在懒惰。我鼓励你让程序做的事情比被要求的还要多,通过这种方式来提高软件的性能。这个条款的核心就是over-eager evaluation(过度热情计算法):在要求你做某些事情以前就完成它们。例如下面这个模板类,用来表示放有大量数字型数据的一个集合:
template<class NumericalType>
class DataCollection {
public:
NumericalType min() const;
NumericalType max() const;
NumericalType avg() const;
...
};
假设min,max和avg函数分别返回现在这个集合的最小值,最大值和平均值,有三种方法实现这三种函数。使用eager evaluation(热情计算法),当min,max和avg函数被调用时,我们检测集合内所有的数值,然后返回一个合适的值。使用lazy evaluation(懒惰计算法),只有确实需要函数的返回值时我们才要求函数返回能用来确定准确数值的数据结构。使用 over-eager evaluation(过度热情计算法),我们随时跟踪目前集合的最小值,最大值和平均值,这样当min,max或avg被调用时,我们可以不用计算就立刻返回正确的数值。如果频繁调用min,max和avg,我们把跟踪集合最小值、最大值和平均值的开销分摊到所有这些函数的调用上,每次函数调用所分摊的开销比eager evaluation或lazy evaluation要小。
隐藏在over-eager evaluation后面的思想是如果你认为一个计算需要频繁进行。你就可以设计一个数据结构高效地处理这些计算需求,这样可以降低每次计算需求的开销。
采用over-eager最简单的方法就是caching(缓存)那些已经被计算出来而以后还有可能需要的值。例如你编写了一个程序,用来提供有关雇员的信息,这些信息中的经常被需要的部分是雇员的办公隔间号码。而假设雇员信息存储在数据库里,但是对于大多数应用程序来说,雇员隔间号都是不相关的,所以数据库不对查抄它们进行优化。为了避免你的程序给数据库造成沉重的负担,可以编写一个函数findCubicleNumber
,用来cache查找的数据。以后需要已经被获取的隔间号时,可以在cache里找到,而不用向数据库查询。
以下是实现findCubicleNumber的一种方法:它使用了标准模板库(STL)里的map对象(有关STL参见条款35)。
int findCubicleNumber(const string& employeeName)
{
// 定义静态map,存储 (employee name, cubicle number)
// pairs. 这个 map 是local cache。
typedef map<string, int> CubicleMap;
static CubicleMap cubes;
// try to find an entry for employeeName in the cache;
// the STL iterator "it" will then point to the found
/