高代绿皮书第四版课后习题复习题一 T9

原题


计算下列 n 阶行列式的值

|D_{n}|=\left| \begin{matrix} 1-{​{a}_{1}} & {​{a}_{2}} & 0 & 0 & \cdots & 0 & 0 \vspace{1ex}\\ -1 & 1-{​{a}_{2}} & {​{a}_{3}} & 0 & \cdots & 0 & 0 \vspace{1ex}\\ 0 & -1 & 1-{​{a}_{3}} & {​{a}_{4}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1-{​{a}_{n}} \\ \end{matrix} \right|


解析


思路:

依次将第 i 行加到第 i-1 行上

r_{i}+r_{i-1}\,(i=n,n-1,\cdots,2)

接着按照第一行展开得到递推式

D_{n}=-a_{1}D_{n-1}+1\,(n\ge 1)\,;D_{0}=1

其中

D_{n-i}=\left| \begin{matrix} 1-{​{a}_{i+1}} & {​{a}_{i+2}} & 0 & 0 & \cdots & 0 & 0 \vspace{1ex}\\ -1 & 1-{​{a}_{i+2}} & {​{a}_{i+3}} & 0 & \cdots & 0 & 0 \vspace{1ex}\\ 0 & -1 & 1-{​{a}_{i+3}} & {​{a}_{i+4}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & -1 & 1-{​{a}_{n}} \\ \end{matrix} \right|_{(n-i)}

参考解题细节:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值