原题
若一个n阶行列式中零元素的个数超过 个,证明:
这个行列式的值为0
解析
思路:
由于n阶行列式共有 个元素,若零元素个数大于
个,则非零元素至多为
个
但n阶行列式有n行n列,故可知
中至少有一个为0
根据行列式的组合定义可得
若一个n阶行列式中零元素的个数超过 个,证明:
这个行列式的值为0
由于n阶行列式共有 个元素,若零元素个数大于
个,则非零元素至多为
个
但n阶行列式有n行n列,故可知
中至少有一个为0
根据行列式的组合定义可得