原题 若一个n阶行列式中零元素的个数超过 个,证明: 这个行列式的值为0 解析 思路: 由于n阶行列式共有 个元素,若零元素个数大于 个,则非零元素至多为 个 但n阶行列式有n行n列,故可知 中至少有一个为0 根据行列式的组合定义可得 参考解题细节: