高代绿皮第四版课后习题1.6 T4

当一个n阶行列式中零元素的数量超过总元素的一半时,由于行列式的性质,至少有一行或一列全为零,导致行列式的值为0。这基于行列式的组合定义和矩阵秩的概念。
摘要由CSDN通过智能技术生成

原题


若一个n阶行列式中零元素的个数超过 n^{2}-n 个,证明:

这个行列式的值为0


解析


思路:

由于n阶行列式共有 n^{2} 个元素,若零元素个数大于 n^{2}-n 个,则非零元素至多为 n-1 个

但n阶行列式有n行n列,故可知

a_{1k_{1}},a_{2k_{2}},\cdots,a_{nk_{n}} 中至少有一个为0

根据行列式的组合定义可得

|A|=\sum\limits_{(k_{1},k_{2},\cdots,k_{n})\in S_{n}}{(-1)^{N(k_{1},k_{2},\cdots,k_{n})}a_{1k_{1}}a_{2k_{2}}\cdots a_{nk_{n}}}=0

参考解题细节:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值