高代绿皮第四版课后习题1.6 T6

文章讲述了如何通过拆分行列式并计算第一列的n-1次项系数,最后将两个结果累加来证明给定多项式的性质,其最高次项为1且n-1次项系数特定值。
摘要由CSDN通过智能技术生成

原题


f(x)=\left| \begin{matrix} x-{​{a}_{11}} & -{​{a}_{12}} & \cdots & -{​{a}_{1n}} \\ -{​{a}_{21}} & x-{​{a}_{22}} & \cdots & -{​{a}_{2n}} \\ \vdots & \vdots & {} & \vdots \\ -{​{a}_{n1}} & -{​{a}_{n2}} & \cdots & x-{​{a}_{nn}} \\ \end{matrix} \right|

其中 x 是未知数, a_{ij} 为常数,求证:

f(x) 是一个最高次项为1的n次多项式,且其n-1次项系数为 -\sum\limits_{i=1}^{n}{a_{ii}}


解析


思路:

将 f(x) 的第一列进行拆分可得

f(x)=\left| \begin{matrix} x & -{​{a}_{12}} & \cdots & -{​{a}_{1n}} \\ 0 & x-{​{a}_{22}} & \cdots & -{​{a}_{2n}} \\ \vdots & \vdots & {} & \vdots \\0& -{​{a}_{n2}} & \cdots & x-{​{a}_{nn}} \\ \end{matrix} \right|+\left| \begin{matrix} -{​{a}_{11}} & -{​{a}_{12}} & \cdots & -{​{a}_{1n}} \\ -{​{a}_{21}} & x-{​{a}_{22}} & \cdots & -{​{a}_{2n}} \\ \vdots & \vdots & {} & \vdots \\ -{​{a}_{n1}} & -{​{a}_{n2}} & \cdots & x-{​{a}_{nn}} \\ \end{matrix} \right|

再将两个行列式拆分并分别计算其n-1次项系数后进行累加即得结论

参考解题细节:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值