高代绿皮第四版课后习题复习题一T7

文章探讨了如何通过将n阶行列式拆分并利用行列式性质,转化为两个子行列式,进一步得到递推式。通过特征方程法找到递推式的解,并分析了两解相同情况下的结论。同时提到了数学归纳法作为另一种证明方法。
摘要由CSDN通过智能技术生成

原题


求证:n阶行列式

\left| \begin{matrix} \cos x & 1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 2\cos x & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 2\cos x & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & {} & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 2\cos x & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 2\cos x \\ \end{matrix} \right|=\cos{nx}


解析


思路:

首先将第 (1,1) 元素 \cos{x} 拆分为 (2\cos{x}-\cos{x}) ,则根据行列式性质可分为两个新的行列式

再将第一个行列式定义为 D_{n} ,第二个行列式按第一列展开可得 \cos{x}D_{n-1}

记原式为 |A| ,则有

|A|=D_{n}-\cos{x}D_{n-1}

接着将 D_{n} 按第一列展开可得递推式

D_{n}=2\cos{x}D_{n-1}-D_{n-2}

处理二阶递推式的一般方法为特征方程法

故可令

2\cos{x}=\alpha+\beta\,\,\,,1=\alpha\beta

则特征方程为

x^{2}-(\alpha+\beta)x+\alpha\beta=0

易得其两解为

x_{1}=\alpha\,\,\,,x_{2}=\beta

接下来再分别讨论两解相同与否的情况即可证得结论

另解:

此题也可利用数学归纳法进行证明,这里不再赘述

参考解题细节:

  • 11
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值